EML741 also inhibits DNMT1 (IC50, 3.1 μM), with no effect on DNMT3a or DNMT3b. EML741 exhibits low cell toxicity, and is membrane permeable and blood-brain barrier penetrated. EML741 is a histone lysine methyltransferase G9a/GLP inhibitor, with an IC50 of 23 nM, Kd of 1.13 μM for G9a.
GLP-1 receptor agonist 3 is a GLP-1 receptor agonist,Example 4A-1, has EC50s of 1.1 nM and 13 nM in Clone H6 and Clone C6 cell lines assay, respectively.
GLP-1 receptor agonist 4 is a glucagon-like peptide-1 receptor (GLP-1R) agonist with an EC50 of 64.5 nM, and is utilized in diabetes treatment research.
GLP-1 amide is a peptide hormone cleaved from proglucagon in the pancreas.1,2 Mice lacking the glucagon receptor (Gcgr-/-) have approximately nine-fold higher levels of total GLP-1 amide, including GLP-1 (1-36) amide and truncated GLP-1 (7-36) amide , in pancreatic tissue compared to wild-type mice.2References1. Schjoldager, B.T., Mortensen, P.E., Christiansen, J., et al. GLP-1 (glucagon-like peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in humans. Dig. Dis. Sci. 34(5), 703-708 (1989).2. Gelling, R.W., Du, X.Q., Dichmann, D.S., et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 100(3), 1438-1443 (2003).
GLP-1 amide is a peptide hormone cleaved from proglucagon in the pancreas.1,2 Mice lacking the glucagon receptor (Gcgr-/-) have approximately nine-fold higher levels of total GLP-1 amide, including GLP-1 (1-36) amide and truncated GLP-1 (7-36) amide , in pancreatic tissue compared to wild-type mice.2
References1. Schjoldager, B.T., Mortensen, P.E., Christiansen, J., et al. GLP-1 (glucagon-like peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in humans. Dig. Dis. Sci. 34(5), 703-708 (1989).2. Gelling, R.W., Du, X.Q., Dichmann, D.S., et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 100(3), 1438-1443 (2003).