Mitochondrial release of cytochrome c triggers apoptosis via the assembly of a multimeric complex including caspase-9, Apaf-1, and other components, sometimes called the apoptosome. Library screens have identified smallmolecules that activate the apoptosome by binding to one or more of its components. CAY10443 is one such molecule. In a cell free, multi-component assay, it activated caspase-3 with an EC50 of 5 μM. These apoptotic activators represent therapeutic lead compounds for the development of antitumor drugs.
Purfalcamine is an orally active, selective Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) inhibitor with an IC50 of 17 nM and an EC50 of 230 nM. Purfalcamine has antimalarial activity and causes malaria parasites developmental arrest at the schizont stage[1][2]. Purfalcamine has low activity against Toxoplasma gondii calcium-dependent protein kinase 3 (TgCDPK3)[1]. Purfalcamine (225, 450 nM) has no effect on the parasitemia in the first 32 hours. After about 40 hours, parasite level remains stable and then begins dropping[1]. Purfalcamine inhibits proliferation with EC50s of 171-259 nM for P. falciparum strains (3D7, Dd2, FCB, HB3 and W2), which indicates effectiveness against drug-resistant parasites[1]. Given that the EC50 value for P. falciparum (3D7) is 230 nM, Purfalcamine shows a therapeutic window ranging from 23-fold to 36-fold (EC50s for CHO=12.33 μM, HEp2=7.235 μM, HeLa=7.029 μM and Huh7=5.476 μM)[1]. Purfalcamine (10 mg kg; oral gavage; BID; for 6 days) demonstrates a delay in the onset of parasitemia in treated mice[1]. Purfalcamine (20 mg kg; orally gavage) exhibits a Cmax of 2.6 μM with a half-life of 3.1 hours[1]. Animal Model: Male BALB c mice, 7 weeks of age with the malaria parasite[1] [1]. Nobutaka Kato, et al. Gene expression signatures and small-moleculecompounds link a protein kinase to Plasmodium falciparum motility. Nat Chem Biol. 2008 Jun;4(6):347-56. [2]. Rajshekhar Y Gaji, et al. Expression of the essential Kinase PfCDPK1 from Plasmodium falciparum in Toxoplasma gondii facilitates the discovery of novel antimalarial drugs. Antimicrob Agents Chemother. 2014 May;58(5):2598-607.