This is a tuberoinfundibular neuropeptide and parathyroid hormone 2(PTH 2)-receptor agonist from hypothalmus. Synthetic TIP39 activates human and rat PTH2 receptors.
(E)-GABAB receptor antagonist 1 decreases GABA-induced IP3 (inositol trisphosphate) production with IC50 of 37.9 μM.GABAB receptor antagonist 1 is a selective and negative allosteric modulator of GABAB (γ-Aminobutyric acid) receptors.
BHPI is a potent inhibitor of nuclear estrogen–ERα-regulated gene expression. Elicits sustained ERα-dependent activation of the endoplasmic reticulum (EnR) stress sensor, the unfolded protein response (UPR), and persistent inhibition of protein synthesis.
The phosphatidylinositol (PtdIns) phosphates represent a small percentage of total membrane phospholipids. However, they play a critical role in the generation and transmission of cellular signals. PtdIns-(1,2-dioctanoyl) is a synthetic analog of natural phosphatidylinositol (PtdIns) containing C8:0 fatty acids at the sn-1 and sn-2 positions. The compound features the same inositol and diacyl glycerol (DAG) stereochemistry as that of the natural compound. The short fatty acid chains of this analog, compared to naturally-occurring PtdIns, gives it different physical properties including high solubility in aqueous media. PtdIns are phosphorylated to mono- (PtdIns-P; PIP), di- (PtdIns-P2; PIP2), and triphosphates (PtdIns-P3; PIP3). Hydrolysis of PtdIns-(4,5)-P2 by phosphoinositide (PI)-specific phospholipase C generates inositol triphosphate (IP3) and DAG which are key second messengers in an intricate biochemical signal transduction cascade.
The phosphatidylinositol (PtdIns) phosphates represent a small percentage of total membrane phospholipids. However, they play a critical role in the generation and transmission of cellular signals. PtdIns-(4)-P1 (1,2-dioctanoyl) is a synthetic analog of natural phosphatidylinositol (PtdIns) featuring C8:0 fatty acids at the sn-1 and sn-2 positions. The compound contains the same inositol and diacylglycerol (DAG) stereochemistry as the natural compound. PtdIns-(4)-P1 can be phosphorylated to di- (PtdIns-P2; PIP2) and triphosphates (PtdIns-P3; PIP3). Hydrolysis of PtdIns-(4,5)-P2 by phosphoinositide (PI)-specific phospholipase C generates inositol triphosphate (IP3) and DAG which are key second messengers in an intricate biochemical signal transduction cascade.