首页 工具
登录
购物车
Forskolin

Forskolin

产品编号 T2939   CAS 66575-29-9
别名: 毛喉素, Coleonol, Colforsin

Forskolin (Coleonol) 属于天然产物,是一种腺苷酸环化酶激活剂 (EC50=0.5 μM)。Forskolin 可以增加 cAMP 水平,可以激活 PXR 和 FXR,也可以诱导细胞自噬。Forskolin 对心脏产生正性肌力作用,具有血小板抗凝集和降压作用。

TargetMol的所有产品和服务仅用于科学研究,不能被用于人体,我们也不向个人提供产品和服务。
Forskolin Chemical Structure
Forskolin, CAS 66575-29-9
规格 价格/CNY 货期 数量
1 mg ¥ 218 现货
5 mg ¥ 496 现货
10 mg ¥ 668 现货
25 mg ¥ 949 现货
50 mg ¥ 1,230 现货
100 mg ¥ 1,960 现货
200 mg ¥ 3,150 现货
500 mg ¥ 4,970 现货
1 mL * 10 mM (in DMSO) ¥ 546 现货
千万补贴 助力科研
BCA蛋白浓度测定试剂盒限时半价
Venetoclax限时半价
MG-132限时半价
产品目录号及名称: Forskolin (T2939)
点击图片重新获取验证码
选择批次  
纯度: 99.86%
纯度: 99.72%
纯度: 99.57%
纯度: 99.57%
纯度: 99.57%
纯度: 99.57%
纯度: 98.83%
纯度: 98.83%
更多批次查询请联系客服
天然产物信息
生物活性
化学信息
存储 & 溶解度
参考文献
结构类型
产品描述 Forskolin (Coleonol) is a natural product, an adenylate cyclase activator (EC50=0.5 μM). Forskolin increases cAMP levels, activates PXR and FXR, and induces autophagy. Forskolin produces positive inotropic effects in the heart, and has platelet anticoagulant and antihypertensive effects.
靶点活性 Adenylyl cyclase:0.5 μM (cell free)
体外活性 方法:大鼠肾上腺髓质嗜铬瘤细胞 PC12 用 Forskolin (0.01-10 µM) 处理 3-48 h,使用 MTT 方法检测细胞生长抑制情况。
结果:用 10μM Forskolin 处理后,细胞活力迅速下降,处理 6 h 后细胞活力下降为 88.4%,处理 48 h 后细胞活力下降为 60.5%。[1]
方法:人骨髓瘤细胞 U266、H929、INA-6、RPMI 8226 和 OPM-2 用 Forskolin (1-100 µM) 处理 72 h,使用 Flow Cytometry 方法检测细胞死亡情况。
结果:Forskolin 剂量依赖性诱导人骨髓瘤细胞死亡,其中 U266、OPM-2 和 INA-6 比 H929 和 RPMI 8226 细胞更敏感。[2]
方法:人 IL-2 依赖性白血病细胞 Kit 225 和人白血病细胞 MT-2 用 Forskolin (1-100 μM) 处理 20 min,使用 ELISA 方法测定 cAMP 浓度。
结果:Forskolin 诱导 cAMP 水平上调,在 50-100 μm 之间达到最大水平。[3]
体内活性 方法:为检测体内抗肿瘤活性,将 Forskolin (4-5 mg/kg in PBS/DMSO solution (15:1)) 腹腔注射给携带鼠多发性骨髓瘤肿瘤 MOPC315 的 BALB/c nude 小鼠,在肿瘤细胞注射后的第 2/4/6 天给药。
结果:所有小鼠最终都发生了肿瘤,但 Forskolin 显著延缓了体内肿瘤的生长。提高 cAMP 的化合物可能在治疗多发性骨髓瘤方面具有治疗潜力。[4]
方法:为研究 Forskolin 对糖尿病条件下视网膜炎症的影响,将 Forskolin (50 mg/kg) 灌胃给药给 STZ 诱导糖尿病模型的 C57BL/6 小鼠,每周一次,持续十二周。
结果:与正常对照组相比,糖尿病对照组和 Forskolin 治疗组的视网膜葡萄糖浓度均增加,但由于葡萄糖转运蛋白 1 表达下调,Forskolin 处理组仅为糖尿病对照组的约 68.06%。与正常对照组相比,Forskolin 治疗组和糖尿病对照组的 ICAM‑1 和 TNF-α 表达上调,但 Forskolin 处理组的这两种炎症因子表达水平分别为糖尿病对照的 68.75% 和 75.37%。[5]
激酶实验 For Jak3 kinase assays, Fsk-treated MT-2 cells were lysed, clarified, and immunoprecipitated using Jak3 antibody as described above. Kinase reactions were carried out as described previously at 30 °C for 20 min. For PKA kinase assays, untreated MT-2 cells were lysed, and Jak3 was immunoprecipitated and bound to PAS beads as described previously. Immunoprecipitated Jak3 was washed with kinase buffer (50 mM Hepes-NaOH (pH 7.4), 10 mM MgCl2, 0.5 mM EGTA, 0.5 mM DTT, 20 μg/ml aprotinin, 10 μg/ml leupeptin, 1 μg/ml pepstatin A) and incubated with 200 μM ATP and purified protein kinase A catalytic subunit (PKAc) as indicated in the figure legends. Kinase reactions were carried out at 32 °C for 30 min followed by vigorous washing of the beads with cold kinase wash buffer as described previously. For [γ-32P]ATP radiolabeled kinase assays using recombinant Jak3, Hek293 cells were transfected with wild type (WT) Jak3 or kinase-dead Jak3 K855A using Lipofectamine 2000 according to the manufacturer's instructions. Cells were lysed and immunoprecipitated with Jak3 antibody. Jak3-bound PAS beads were washed three times in cold lysis buffer followed by kinase buffer. Kinase reactions were initiated by adding 10 μCi [γ-32P]ATP, 10 μm unlabeled ATP, and 1 μg of purified PKAc to Jak3-bound PAS bead reaction mixtures. Kinase reactions were performed at 32 °C for 30 min. Jak3-bound PAS beads were washed three times in radioimmunoassay buffer (10 mM Tris-HCl, pH 7.4, 75 mM NaCl, 20 mM EDTA, 10 mM EGTA, 20 mM Na4P2O7, 50 mM NaF, 20 mM 2-glycerolphosphate, 1 mM p-nitrophenyl phosphate, 0.1% Triton X-100) and one time in kinase wash buffer. The reactions were stopped by adding 2× SDS-PAGE sample buffer followed by SDS-PAGE. Coomassie stainable Jak3 bands were excised from the PVDF membrane and subjected to phosphoamino acid analysis [2].
细胞实验 Kit 225 or MT-2 cells were treated with 1, 5, 10, 20, 50, or 100 μM Forskolin for 20 min at 37 °C. Cells were lysed and clarified by centrifugation, and the concentration of cAMP was detected by direct cAMP ELISA. Optical density was measured at 405 nm, and the concentration of intracellular cAMP was calculated using a weighted four parameter logistic curve according to the manufactures instructions [2].
动物实验 Forskolin was dissolved in dimethyl sulfoxide (DMSO) and injected intraperitoneally into neonatal mice at postnatal days 4 (P4) and 5 (P5). Mice injected with DMSO served as the controls. The treated mice were euthanized at P6, and their retinas were isolated for whole-mount immunohistochemistry (IHC). We first tested the effect of different concentrations of forskolin on the survival rate and retinal vasculature and determined the optimal concentration, 1.0 μg/50 μL (0.3 mg/kg) at P4 and 1.5 μg/50 μL (0.5 mg/kg) at P5, used to compare the retinal vascular phenotypes between WT mice and Mrp4-deficient mice [4]. . After acclimatization for 2 weeks, animals were randomly divided into four groups of eight rats each and treated for six consecutive weeks as follows: The first group was treated with CCl4 (50% CCl4/corn oil; 0.5 mL·kg?1, i.p.) twice a week to induce liver fibrosis. The second group was given forskolin only at a dose of 10 mg·kg?1, i.p., dissolved in a DMSO/saline solution (1:49) five times a week. The third group was given both CCl4 and forskolin. The dose of forskolin used here was based on the results of our preliminary study. The fourth group served as the normal control, receiving vehicles only. At 24 h after the last injection, blood samples were collected from the retro‐orbital plexus after light anesthesia with sodium pentobarbital (50 mg·kg?1, i.p.). Serum was separated by centrifugation at 3000× g for 10 min and was used for the assessment of liver functions. Rats were killed by cervical dislocation, and livers were removed and weighed. A portion of liver tissue was washed and homogenized to obtain a 20% (w·v?1) homogenate, which was used for assessment of oxidative stress, inflammatory and fibrogenic markers. Another portion was placed in formalin for immunohistochemical and histopathological analyses. The remainder was stored at ?80°C, together with the 20% homogenate, until needed [5].
别名 毛喉素, Coleonol, Colforsin
化合物与蛋白结合的复合物

T2939_1

RAT TYPE II ADENYLYL CYCLASE C2 DOMAIN/FORSKOLIN COMPLEX

分子量 410.5
分子式 C22H34O7
CAS No. 66575-29-9

存储

keep away from direct sunlight | Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度

H2O: Insoluble

DMSO: 30 mg/mL (73 mM)

Ethanol: 15 mg/mL (36.5 mM)

溶液配制表

可选溶剂 浓度 体积 质量 1 mg 5 mg 10 mg 25 mg
DMSO / Ethanol 1 mM 2.4361 mL 12.1803 mL 24.3605 mL 60.9013 mL
5 mM 0.4872 mL 2.4361 mL 4.8721 mL 12.1803 mL
10 mM 0.2436 mL 1.218 mL 2.4361 mL 6.0901 mL
20 mM 0.1218 mL 0.609 mL 1.218 mL 3.0451 mL
DMSO 50 mM 0.0487 mL 0.2436 mL 0.4872 mL 1.218 mL

TargetMol Calculator计算器

摩尔浓度计算器
稀释计算器
配液计算器
分子量计算器
=
X
X
X
=
X
=
/
g/mol

输入分子式,点击计算,可计算出产品的分子量。

TargetMol Library Books参考文献

1. Park KH, et al. Modulation of PC12 cell viability by forskolin-induced cyclic AMP levels through ERK and JNK pathways: an implication for L-DOPA-induced cytotoxicity in nigrostriatal dopamine neurons. Toxicol Sci. 2012 Jul;128(1):247-57. 2. Follin-Arbelet V, et al. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM. Sci Rep. 2015 Aug 26;5:13001. 3. Rodriguez G, et al. Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex. J Biol Chem. 2013 Mar 8;288(10):7137-46. 4. Follin-Arbelet V, et al. Cyclic AMP induces apoptosis in multiple myeloma cells and inhibits tumor development in a mouse myeloma model. BMC Cancer. 2011 Jul 18;11:301. 5. You ZP, et al. Forskolin attenuates retinal inflammation in diabetic mice. Mol Med Rep. 2018 Feb;17(2):2321-2326. 6. Lu J, Dou F, Yu Z. The potassium channel KCa3. 1 represents a valid pharmacological target for microgliosis-induced neuronal impairment in a mouse model of Parkinson’s disease[J]. Journal of Neuroinflammation. 2019, 16(1): 1-14. 7. Lin J Y, Cheng J, Du Y Q, et al. In vitro expansion of pancreatic islet clusters facilitated by hormones and chemicals[J]. Cell Discovery. 2020, 6(1): 1-12. 8. Lin J Y, Cheng J, Du Y Q, et al. In vitro pancreatic islet cluster expansion facilitated by hormones and chemicals[J]. Cell Discovery. 2020, 6(1): 1-12. 9. Wu L, Dong A, Dong L, et al. PARIS, an optogenetic method for functionally mapping gap junctions[J]. eLife. 2019 Jan 14;8. pii: e43366. 10. Xiaoli F, Yaqing Z, Ruhui L, et al. Graphene oxide disrupted mitochondrial homeostasis through inducing intracellular redox deviation and autophagy-lysosomal network dysfunction in SH-SY5Y cells[J]. Journal of Hazardous Materials. 2021: 126158.

TargetMol Library Books文献引用

1. Li J, Bai Y, Liu Y, et al.Transcriptome-based chemical screens identify CDK8 as a common barrier in multiple cell reprogramming systems.Cell Reports.2023, 42(6). 2. Han L, Song B, Zhang P, et al.PC3T: a signature-driven predictor of chemical compounds for cellular transition.Communications Biology.2023, 6(1): 989. 3. Chen S, Zhou X, Li W, et al.Development of a novel peptide targeting GPR81 to suppress adipocyte-mediated tumor progression.Biochemical Pharmacology.2023: 115800. 4. Ma X, Lu Y, Zhou Z, Human expandable pancreatic progenitor–derived β cells ameliorate diabetes. Science Advances. 2022, 8(8): eabk1826. 5. Fu J, Jiang L, Yu B, et al. Generation of a Human iPSC Line CIBi010-A with a Reporter for ASGR1 Using CRISPR/Cas9. Stem Cell Research. 2022: 102800 6. Zhao C, Sun C, Yuan J, et al. Hericium caput-medusae (Bull.: Fr.) Pers. fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion. Journal of Ethnopharmacology. 2022: 115721. 7. Xiaoli F, Yaqing Z, Ruhui L, et al. Graphene oxide disrupted mitochondrial homeostasis through inducing intracellular redox deviation and autophagy-lysosomal network dysfunction in SH-SY5Y cells. Journal of Hazardous Materials. 2021: 126158. 8. Wu L, Dong A, Dong L, et al. PARIS, an optogenetic method for functionally mapping gap junctions. ELife. 2019 Jan 14;8. pii: e43366 9. Lin J Y, Cheng J, Du Y Q, et al. In vitro pancreatic islet cluster expansion facilitated by hormones and chemicals. Cell Discovery. 2020, 6(1): 1-12 10. Wang W, Ren S, Lu Y, et al. Inhibition of Syk promotes chemical reprogramming of fibroblasts via metabolic rewiring and H2S production. The EMBO Journal. 2021 Jun 1;40(11):e106771. doi: 10.15252/embj.2020106771. Epub 2021 Apr 28.
11. Zhang X, Ke P X, Yuan X, et al. Forskolin Protected against Streptozotocin-Induced Diabetic Cardiomyopathy via Inhibition of Oxidative Stress and Cardiac Fibrosis in Mice. BioMed Research International. 2021, 2021 12. Jin C, Zhao S, Xie H. Forskolin enhanced the osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. Journal of Dental Sciences. 2022 13. Wang H, Liang N, Huang D, et al. The effects of high-density lipoprotein and oxidized high-density lipoprotein on forskolin-induced syncytialization of BeWo cells. Placenta. 2021, 103: 199-205 14. Miao Y, Zhang Y, Qiao S, et al. Oral administration of curcumin ameliorates pulmonary fibrosis in mice through 15d-PGJ2-mediated induction of hepatocyte growth factor in the colon. Acta Pharmacologica Sinica. 2020: 1-14 15. Lin J Y, Cheng J, Du Y Q, et al. In vitro expansion of pancreatic islet clusters facilitated by hormones and chemicals. Cell Discovery. 2020, 6(1): 1-12 16. Hu Z, Lu Y, Cao J, et al.N-acetyltransferase NAT10 controls cell fates via connecting mRNA cytidine acetylation to chromatin signaling.Science Advances.2024, 10(2): eadh9871. 17. Zhao X, Cai X, Zhu H, et al.27-Hydroxycholesterol inhibits trophoblast fusion during placenta development by activating PI3K/AKT/mTOR signaling pathway.Archives of Toxicology.2024: 1-15. 18. Mendonça L S, Henriques D, Fernandes V, et al.Graft-derived neurons and bystander effects are maintained for six months after human iPSC-derived NESC transplantation in mice’s cerebella.Scientific Reports.2024, 14(1): 3236. 19. Dang Q, Zhu Y, Zhang Y, et al.Nuclear Binding Protein 2/Nesfatin-1 Affects Trophoblast Cell Fusion during Placental Development via the EGFR-PLCG1-CAMK4 Pathway.International Journal of Molecular Sciences.2024, 25(3): 1925. 20. Zhang Q, Shen X, Yuan X, et al.Lipopolysaccharide binding protein resists hepatic oxidative stress by regulating lipid droplet homeostasis.Nature Communications.2024, 15(1): 3213.
收起
Vonafexor LY2562175 Guggulsterone Tauro-β-muricholic acid Turofexorate Isopropyl Altenusin GSK2324 Tropifexor

相关化合物库

该产品包含在如下化合物库中:
抗癌活性化合物库 膜蛋白靶向化合物库 共价抑制剂库 植物来源化合物库 脂代谢化合物库 已知活性化合物库 神经信号分子库 NO PAINS 化合物库 中药单体化合物库 干细胞分化化合物库

TargetMol Calculator剂量换算

对于不同动物的给药剂量换算,您也可以参考 更多...

TargetMol Calculator 体内实验配液计算器

请在以下方框中输入您的动物实验信息后点击计算,可以得到母液配置方法和体内配方的制备方法: 比如您的给药剂量是10 mg/kg,每只动物体重20 g,给药体积100 μL,一共给药动物10 只,您使用的配方为5% DMSO+30% PEG300+5% Tween 80+60% ddH2O。那么您的工作液浓度为2 mg/mL。

母液配置方法:2 mg 药物溶于 50 μL DMSO (母液浓度为 40 mg/mL), 如您需要配置的浓度超过该产品的溶解度,请先与我们联系。

体内配方的制备方法:取 50 μL DMSO 主液,加入 300 μL PEG300, 混匀澄清,再加 50 μL Tween 80,混匀澄清,再加 600 μL ddH2O, 混匀澄清。

第一步:请输入动物实验的基本信息
剂量
mg/kg
每只动物体重
g
给药体积
μL
动物数量
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
% DMSO
%
% Tween 80
% ddH2O
计算 重置

技术支持

您可能有的问题的答案可以在抑制剂处理说明中找到,包括如何准备库存溶液,如何存储产品,以及基于细胞的分析和动物实验需要特别注意的问题。

Keywords

Forskolin 66575-29-9 Autophagy Metabolism Neuroscience AChR Adenylyl cyclase FXR notropic pregnane Inhibitor exosome cancer antihypertensive 毛喉素 antiaggregatory X receptor prostate NR1H4 Adenylate Cyclase PXR Coleonol Colforsin cAMP inhibit inhibitor

 

TargetMol Loading
陶术
生物
TargetMol®中国区唯一合作伙伴
点击进入陶术生物官网陶术生物
联系我们
400-820-0310

上海市静安区江场三路238号8楼