(±)9-HpODE is a racemic mixture of the fatty acid hydroperoxide product (9(S)-HpODE) formed from lipoxygenase action on linoleic acid. It shows antimicrobial activity against various fungal and bacterial pathogens and thus may play a role in plant defense. In mammalian species, monocyte-induced oxidization of LDL generates significant amounts of esterified 9-HpODE, which is rapidly reduced to 9-HODE.
9(S),12(S),13(S)-TriHOME is a linoleic acid-derived oxylipin that has diverse biological activities.1,2,3,4It has been found in various plants and is produced in human eosinophils in a 15-lipoxygenase-dependent, soluble epoxide hydrolase-independent manner.1,59(S),12(S)13(S)-TriHOME inhibits antigen-induced β-hexosaminidase release from RBL-2H3 mast cells (IC50= 28.7 μg/ml).2It inhibits LPS-induced nitric oxide (NO) production in BV-2 microglia (IC50= 40.95 μM).3In vivo, 9(S),12(S),13(S)-TriHOME (1 g/animal) enhances the antiviral IgA and IgG antibody responses induced by a nasal influenza hemagglutinin (HA) vaccine by 5.2- and 2-fold, respectively, in mice.4
1.Hamberg, M., and Hamberg, G.Peroxygenase-catalyzed fatty acid epoxidation in cereal seeds: Sequential oxidation of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acidPlant Physiol.110(3)807-815(1996) 2.Hong, S.S., and Oh, J.S.Inhibitors of antigen-induced degranulation of RBL-2H3 cells isolated from wheat branJ. Korean Soc. Appl. Biol. Chem.5569-74(2012) 3.Kim, C.S., Kwon, O.W., Kim, S.Y., et al.Five new oxylipins from Chaenomeles sinensisLipids49(11)1151-1159(2014) 4.Shirahata, T., Sunazuka, T., Yoshida, K., et al.Total synthesis, elucidation of absolute stereochemistry, and adjuvant activity of trihydroxy fatty acidsTetrahedron62(40)9483-9496(2006) 5.Fuchs, D., Tang, X., Johnsson, A.-K., et al.Eosinophils synthesize trihydroxyoctadecenoic acids (TriHOMEs) via a 15-lipoxygenase dependent processBiochim. Biophys. Acta Mol. Cell Biol. Lipids1865(4)158611(2020)
1,3-Dilinoleoyl-2-oleoyl-rac-glycerol is a triacylglycerol that contains linoleic acid at the sn-1 and sn-3 positions and oleic acid at the sn-2 position. It has been found in grape seed, pumpkin seed, soybean, sunflower, and wheat germ oils, with the highest content in grape seed oil.
Cognac oil, predominantly derived from wine lees, exhibits distinctive fatty acid compositions, characterized by high proportions of Palmitic acid (59.26%), Linoleic acid (11.92%), Myristic acid (8.97%), and Oleic acid (8.3%) among other fatty acids. Notably, the application of Cognac oil enhances the permeability of Rhodamine 6G (R6G) across various membranes, resulting in a generalized increase in permeation.