HT-2 toxin-13C22is intended for use as an internal standard for the quantification of HT-2 toxin by GC- or LC-MS. HT-2 toxin is a type A trichothecene mycotoxin and an active, deacetylated metabolite of the trichothecene mycotoxin T-2 toxin .1,2Like T-2 toxin, HT-2 toxin inhibits protein synthesis and cell proliferation in plants.2HT-2 toxin also reduces viability of HepG2, A549, HEp-2, Caco-2, A-204, U937, Jurkat, and RPMI-8226 cancer cells with IC50values ranging from 3.1 to 23 ng ml and human umbilical vein endothelial cells with an IC50value of 56.4 ng ml.1It induces oxidative stress, DNA damage, and autophagy in, as well as halts the development of, cultured mouse embryos when used at a concentration of 10 nM.3HT-2 toxin has been found in cereal grains and food products.4,5 1.Nielsen, C., Casteel, M., Didier, A., et al.Trichothecene-induced cytotoxicity on human cell linesMycotoxin Res.25(2)77-84(2009) 2.Nathanail, A.V., Varga, E., Meng-Reiterer, J., et al.Metabolism of the fusarium mycotoxins T-2 toxin and HT-2 toxin in wheatJ. Agric. Food Chem.63(35)7862-7872(2015) 3.Zhang, L., Li, L., Xu, J., et al.HT-2 toxin exposure induces mitochondria dysfunction and DNA damage during mouse early embryo developmentReprod. Toxicol.85104-109(2019) 4.Langseth, W., and Rundberget, T.The occurrence of HT-2 toxin and other trichothecenes in Norwegian cerealsMycopathologia147(3)157-165(1999) 5.Al-Taher, F., Cappozzo, J., Zweigenbaum, J., et al.Detection and quantitation of mycotoxins in infant cereals in the U.S. market by LC-MS MS using a stable isotope dilution assayFood Control72(Part A)27-35(2017)
Palmitic acid-13C (C1, C2, C3, and C4 labeled) is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid is a common 16-carbon saturated fat that represents 10-20% of human dietary fat intake and comprises approximately 25 and 65% of human total plasma lipids and saturated fatty acids, respectively.1,2Acylation of palmitic acid to proteins facilitates anchoring of membrane-bound proteins to the lipid bilayer and trafficking of intracellular proteins, promotes protein-vesicle interactions, and regulates various G protein-coupled receptor functions.1Red blood cell palmitic acid levels are increased in patients with metabolic syndrome compared to patients without metabolic syndrome and are also increased in the plasma of patients with type 2 diabetes compared to individuals without diabetes.3,4 1.Fatima, S., Hu, X., Gong, R.-H., et al.Palmitic acid is an intracellular signaling molecule involved in disease developmentCell. Mol. Life Sci.76(13)2547-2557(2019) 2.Santos, M.J., López-Jurado, M., Llopis, J., et al.Influence of dietary supplementation with fish oil on plasma fatty acid composition in coronary heart disease patientsAnn. Nutr. Metab.39(1)52-62(1995) 3.Yi, L.-Z., He, J., Liang, Y.-Z., et al.Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDAFEBS Lett.580(30)6837-6845(2006) 4.Kabagambe, E.K., Tsai, M.Y., Hopkins, P.N., et al.Erythrocyte fatty acid composition and the metabolic syndrome: A National Heart, Lung, and Blood Institute GOLDN studyClin. Chem.54(1)154-162(2008)
Urocortin III is a neuropeptide hormone and member of the corticotropin-releasing factor (CRF) family which includes mammalian CRF , urocortin , urocortin II , frog sauvagine, and piscine urotensin I.1 Human urocortin III shares 90, 40, 37, and 21% identity to mouse urocortin III , mouse urocortin II , human urocortin , and mouse urocortin, respectively. Urocortin III selectively binds to type 2 CRF receptors (Kis = 21.7, 13.5, and >100 nM for rat CRF2α, rat CRF2β, and human CRF1, respectively). It stimulates cAMP production in CHO cells expressing rat CRF2α and mouse CRF2β (EC50s = 0.16 and 0.12 nM, respectively) as well as cultured anterior pituitary cells expressing endogenous CRF2β. Urocortin III is co-released with insulin to potentiate glucose-stimulated somatostatin release in vitro in human pancreatic β-cells.2 In vivo, urocortin III reduces food intake in a dose- and time-dependent manner in mice with a minimum effective dose (MED) of 0.3 nmol/animal.3 It increases swimming time in a forced swim test in mice, indicating antidepressant-like activity.4References1. Lewis, K., Li, C., Perrin, M.H., et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl. Acad. Sci. U.S.A. 98(13), 7570-7575 (2001).2. van der Meulen, T., Donaldson, C.J., Cáceres, E., et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21(7), 769-776 (2015).3. Pelleymounter, M.A., Joppa, M., Ling, N., et al. Behavioral and neuroendocrine effects of the selective CRF2 receptor agonists urocortin II and urocortin III. Peptides 25(4), 659-666 (2004).4. Tanaka, M., Kádár, K., Tóth, G., et al. Antidepressant-like effects of urocortin 3 fragments. Brain Res. Bull. 84(6), 414-418 (2011). Urocortin III is a neuropeptide hormone and member of the corticotropin-releasing factor (CRF) family which includes mammalian CRF , urocortin , urocortin II , frog sauvagine, and piscine urotensin I.1 Human urocortin III shares 90, 40, 37, and 21% identity to mouse urocortin III , mouse urocortin II , human urocortin , and mouse urocortin, respectively. Urocortin III selectively binds to type 2 CRF receptors (Kis = 21.7, 13.5, and >100 nM for rat CRF2α, rat CRF2β, and human CRF1, respectively). It stimulates cAMP production in CHO cells expressing rat CRF2α and mouse CRF2β (EC50s = 0.16 and 0.12 nM, respectively) as well as cultured anterior pituitary cells expressing endogenous CRF2β. Urocortin III is co-released with insulin to potentiate glucose-stimulated somatostatin release in vitro in human pancreatic β-cells.2 In vivo, urocortin III reduces food intake in a dose- and time-dependent manner in mice with a minimum effective dose (MED) of 0.3 nmol/animal.3 It increases swimming time in a forced swim test in mice, indicating antidepressant-like activity.4 References1. Lewis, K., Li, C., Perrin, M.H., et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl. Acad. Sci. U.S.A. 98(13), 7570-7575 (2001).2. van der Meulen, T., Donaldson, C.J., Cáceres, E., et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21(7), 769-776 (2015).3. Pelleymounter, M.A., Joppa, M., Ling, N., et al. Behavioral and neuroendocrine effects of the selective CRF2 receptor agonists urocortin II and urocortin III. Peptides 25(4), 659-666 (2004).4. Tanaka, M., Kádár, K., Tóth, G., et al. Antidepressant-like effects of urocortin 3 fragments. Brain Res. Bull. 84(6), 414-418 (2011).
Nitisinone-13C6is intended for use as an internal standard for the quantification of nitisinone by GC- or LC-MS. Nitisinone is an inhibitor of 4-hydroxyphenylpyruvate dioxygenase (HPPD), which converts 4-hydroxyphenylpyruvate (HPPA) to homogentisate in the tyrosine catabolic pathway.1Nitisinone increases urinary levels of HPPA and 4-hydroxyphenyllactate (HPLA) in rats when administered at a dose of 10 mg kg. Nitisinone (3 mg kg) prevents the neonatal lethality of fumarylacetoacetate hydrolase (FAH) deficiency in mice when administered to pregnant dams.2It exhibits hepatoprotective effects inFAH- -mice, such as prevention of increases in plasma levels of aspartate serine aminotransferase (AST) and conjugated bilirubin, when administration is continued following birth at a dose of 1 mg kg. Nitisinone (100 μg) decreases urinary excretion of homogentisate and increases urinary excretion of HPPA, HPLA, and 4-hydroxyphenylacetate in a mouse model of alkaptonuria induced by ethylnitrosourea.3Formulations containing nitisinone have been used in the treatment of hereditary tyrosinemia type 1 (HT-1). 1.Ellis, M.K., Whitfield, A.C., Gowans, L.A., et al.Inhibition of 4-hydroxyphenylpyruvate dioxygenase by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione and 2-(2-chloro-4-methanesulfonylbenzoyl)-cyclohexane-1,3-dioneToxicol. Appl. Pharmacol.133(1)12-19(1995) 2.Grompe, M., Lindstedt, S., al-Dhalimy, M., et al.Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type INat. Genet.10(4)453-460(1995) 3.Suzuki, Y., Oda, K., Yoshikawa, Y., et al.A novel therapeutic trial of homogentisic aciduria in a murine model of alkaptonuriaJ. Hum. Genet.44(2)79-84(1999)
3β-OH-7-Oxocholenic acid is a bile acid.1 It is also a metabolite of 7β-hydroxy cholesterol in rats. Conjugated forms of 3β-OH-7-oxocholenic acid have been found in the urine of patients with Neimann-Pick disease type C.2,3 |1. Norii, T., Yamaga, N., and Yamasaki, K. Metabolism of 7β-hydroxycholesterol-4-14C in rat. Steroids 15(3), 303-326 (1970).|2. Alvelius, G., Hjalmarson, O., Griffiths, W.J., et al. Identification of unusual 7-oxygenated bile acid sulfates in a patient with Niemann-Pick disease, type C. J. Lipid Res. 42(10), 1571-1577 (2001).|3. Maekawa, M., Omura, K., Sekiguchi, S., et al. Identification of two sulfated cholesterol metabolites found in the urine of a patient with Niemann-Pick disease type C as novel candidate diagnostic markers. Mass Spectrom. (Tokyo) 5(2), S0053 (2016).
C6 urea ceramide is an inhibitor of neutral ceramidase.1 It increases total ceramide levels in wild-type mouse embryonic fibroblasts (MEFs) and in HT-29 colon cancer cells but not in MEFs lacking neutral ceramidase. It inhibits proliferation of, and induces apoptosis and autophagy in HT-29, but not non-cancerous RIE-1, cells when used at concentrations of 5 and 10 μM. C6 urea ceramide decreases total β-catenin, increases phosphorylated β-catenin, and induces colocalization of β-catenin with the 20S proteasome in HT-29 and HCT116, but not RIE-1, cells. It reduces tumor growth and increases C16, C18, C20, and C24 ceramide levels in tumor tissue in an HT-29 mouse xenograft model when administered at doses of 1.25, 2.5, and 5 mg/kg for five days. |1. García-Barros, M., Coant, N., Kawamori, T., et al. Role of neutral ceramidase in colon cancer. FASEB J. 30(12), 4159-4171 (2016).
Urocortin II is a neuropeptide hormone and member of the corticotropin-releasing factor (CRF) family which includes mammalian CRF , urocortin , urocortin III , frog sauvagine, and piscine urotensin I.1 Mouse urocortin II shares 34 and 42% sequence homology with rat CRF and urocortin . It is expressed in mouse paraventricular, supraoptic, and arcuate nuclei of the hypothalamus, the locus coeruleus, and in motor nuclei of the brainstem and spinal ventral horn. Urocortin II selectively binds to CRF1 over CRF2 receptors (Kis = 0.66 and >100 nM, respectively) and induces cAMP production in CHO cells expressing CRF2 (EC50 = 0.14 nM). In vivo, urocortin II suppresses nighttime food intake by 35% in rats when administered intracerebroventricularly at a dose of 1 μg. Urocortin II (0.1 and 0.5 μg, i.c.v) stimulates fecal pellet output, increases distal colonic transit, and inhibits gastric emptying in mice.2References1. Reyes, T.M., Lewis, K., Perrin, M.H., et al. Urocortin II: A member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl. Acad. Sci. U.S.A. 98(5), 2843-2848 (2001).2. Martinez, V., Wang, L., Million, M., et al. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides 25(10), 1733-1744 (2004). Urocortin II is a neuropeptide hormone and member of the corticotropin-releasing factor (CRF) family which includes mammalian CRF , urocortin , urocortin III , frog sauvagine, and piscine urotensin I.1 Mouse urocortin II shares 34 and 42% sequence homology with rat CRF and urocortin . It is expressed in mouse paraventricular, supraoptic, and arcuate nuclei of the hypothalamus, the locus coeruleus, and in motor nuclei of the brainstem and spinal ventral horn. Urocortin II selectively binds to CRF1 over CRF2 receptors (Kis = 0.66 and >100 nM, respectively) and induces cAMP production in CHO cells expressing CRF2 (EC50 = 0.14 nM). In vivo, urocortin II suppresses nighttime food intake by 35% in rats when administered intracerebroventricularly at a dose of 1 μg. Urocortin II (0.1 and 0.5 μg, i.c.v) stimulates fecal pellet output, increases distal colonic transit, and inhibits gastric emptying in mice.2 References1. Reyes, T.M., Lewis, K., Perrin, M.H., et al. Urocortin II: A member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl. Acad. Sci. U.S.A. 98(5), 2843-2848 (2001).2. Martinez, V., Wang, L., Million, M., et al. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides 25(10), 1733-1744 (2004).
Bile acids are essential for solubilization and transport of dietary lipids, are the major products of cholesterol catabolism, and are physiological ligands for farnesoid X receptor (FXR), a nuclear receptor that regulates genes involved in lipid metabolism.1They are also inherently cytotoxic, as physiological imbalance contributes to increased oxidative stress.2,3Bile acid-controlled signaling pathways are promising novel targets to treat such metabolic diseases as obesity, type II diabetes, hyperlipidemia, and atherosclerosis.Guggulsterone, derived from resin of the guggul tree, is a competitive antagonist of FXR bothin vitroandin vivo.4Thecisstereoisomer of guggulsterone, (E)-guggulsterone, decreases chenodeoxycholic acid (CDCA)-induced FXR activation with an IC50value of 15 μM.5,6By inhibiting CDCA-induced transactivation of FXR, guggulsterone lowers low-density lipoprotein cholesterol and triglyceride levels in rodents fed a high cholesterol diet.4 1.Makishima, M., Okamoto, A.Y., Repa, J.J., et al.Identification of a nuclear receptor for bile acidsScience2841362-1365(1999) 2.Barbier, O., Torra, I.P., Sirvent, A., et al.FXR induces the UGT2B4 enzyme in hepatocytes: A potential mechanism of negative feedback control of FXR activityGastroenterology1241926-1940(2003) 3.Tan, K.P., Yang, M., and Ito, S.Activation of nuclear factor (erythroid-2 like) factor 2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stressMol. Pharmacol.72(5)1380-1390(2007) 4.Urizar, N.L., Liverman, A.B., Dodds, D.T., et al.A natural product that lowers cholesterol as an anatagonist ligand for FXRScience296(5573)1703-1706(2002) 5.Cui, J., Huang, L., Zhao, A., et al.Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pumpThe Journal of Biological Chemisty278(12)10214-10220(2003) 6.Wu, J., Xia, C., Meier, J., et al.The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptorMolecular Endocrinology16(7)1590-1597(2002)
NG 25 is a type II kinase inhibitor that inhibits MAP4K2 and TAK1 (IC50s = 21.7 and 149 nM, respectively).1It also inhibits the Src family kinases Src and LYN (IC50s = 113 and 12.9 nM, respectively) and Abl family kinases (IC50s = 75.2 nM), as well as CSK, FER, and p38α (IC50s = 56.4, 82.3, and 102 nM, respectively). NG 25 (100 nM) prevents TNF-α-induced IKKα/β phosphorylation and IκB-α degradation in L929 cells. It inhibits secretion of IFN-α and IFN-β induced by CpG type B and CL097, respectively, in Gen2.2 cells in a concentration-dependent manner.2NG 25 decreases cell viability of HCT116KRASWT, and to a greater degree of HCT116KRASG13D, colorectal cancer cells in a concentration-dependent manner.3It also reduces tumor growth and increases the number of TUNEL-positive tumor cells in a CT26KRASG12Dmouse orthotopic model of colorectal cancer. 1.Tan, L., Nomanbhoy, T., Gurbani, D., et al.Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2)J. Med. Chem.58(1)183-196(2015) 2.Pauls, E., Shpiro, N., Peggie, M., et al.Essential role for IKKβ in production of type 1 interferons by plasmacytoid dendritic cellsJ. Biol. Chem. 287(23)19216-19228(2012) 3.Ma, Q., Gu, L., Liao, S., et al.NG25, a novel inhibitor of TAK1, suppresses KRAS-mutant colorectal cancer growth in vitro and in vivoApoptosis24(1-2)83-94(2019)
Norhyodeoxycholic acid (NHDCA) is a synthetic bile acid and a derivative of hyodeoxycholic acid .1,2 NHDCA is an intermediate in the synthesis of 3β-sulfooxy-7β-hydroxy-24-nor-5-cholen-23-oic acid, which has been used as an internal standard for the quantification of δ5-bile acid conjugates that have been identified in patients with Niemann-Pick disease type C1.3 |1. Schteingart, C.D., and Hofmann, A.F. Synthesis of 24-nor-5β-cholan-23-oic acid derivatives: A convenient and efficient one-carbon degradation of the side chain of natural bile acids. J. Lipid Res. 29(10), 1387-1395 (1988).|2. Une, M., and Hoshita, T. Natural occurrence and chemical synthesis of bile alcohols, higher bile acids, and short side chain bile acids. Hiroshima J. Med. Sci. 43(2), 37-67 (1994).|3. Kakiyama, G., Muto, A., Shimada, M., et al. Chemical synthesis of 3β-sulfooxy-7β-hydroxy-24-nor-5-cholenoic acid: An internal standard for mass spectrometric analysis of the abnormal δ5-bile acids occurring in Niemann-Pick disease. Steroids 74(9), 766-772 (2009).
Lysosphingomyelin is an endogenous bioactive sphingolipid and a constituent of lipoproteins.1,2It is produced by the removal of the acyl group from sphingomyelin by a deacylase and acts as a precursor in the biosynthesis of sphingosine-1-phosphate . D-erythroLysosphingomyelin is an agonist of the S1P receptors S1P1, S1P2, and S1P3(EC50s = 167.7, 368.1, and 482.6 nM, respectively, for the human receptors).3It is also an agonist of the orphan receptor ovarian cancer G protein-coupled receptor 1 (ORG1) that induces calcium accumulation in cells overexpressing OGR1 (EC50= ~35 nM).4Levels of D-erythrolysosphingomyelin are increased in skin isolated from patients with atopic dermatitis, as well as postmortem brain from patients with Niemann-Pick disease type A, but not type B.2,5L-threolysosphingomyelin is also an S1P1-3agonist (EC50s = 19.3, 131.8, and 313.3 nM, respectively).3This product is a mixture of D-erythroand L-threolysosphingomyelin. [Matreya, LLC. Catalog No. 1321] 1.Ito, M., Kurita, T., and Kita, K.A novel enzyme that cleaves the N-acyl linkage of ceramides in various glycosphingolipids as well as sphingomyelin to produce their lyso formsJ. Biol. Chem.270(41)24370-24374(1995) 2.Nixon, G.F., Mathieson, F.A., and Hunter, I.The multi-functional role of sphingosylphosphorylcholineProg. Lipid Res.47(1)62-75(2008) 3.Im, D.-S., Clemens, J., Macdonald, T.L., et al.Characterization of the human and mouse sphingosine 1-phosphate receptor, S1P5 (Edg-8): Structure-activity relationship of sphingosine1-phosphate receptorsBiochemistry40(46)14053-14060(2001) 4.Meyer zu Heringdorf, D., Himmel, H.M., and Jakobs, K.H.Sphingosylphosphorylcholine-biological functions and mechanisms of actionBiochim. Biophys. Acta1582(1-3)178-189(2002) 5.Rodriguez-Lafrasse, C., and Vanier, M.T.Sphingosylphosphorylcholine in Niemann-Pick disease brain: Accumulation in type A but not in type BNeurochem. Res.24(2)199-205(1999)
CAY10787 is an oxysterol and a negative allosteric modulator of GABAAreceptors.1,2It reduces GABA-induced currents in HEK cells expressing α1β1γ2or α4β3γ2subunit-containing GABAAreceptors (IC50s = 1.5 and 1 μM, respectively).2CAY10787 (500 nM) reduces GABA-induced depolarization of peptidergic and non-peptidergic nociceptors, C-LTMRs, and cold thermosensors in isolated mouse dorsal root ganglion (DRG) neurons.In vivo, CAY10787 (2, 10, and 50 mg/kg) increases latency to nocifensive behaviors in the hot plate test in mice. 1.Hahn, M., Tang, M., and Subbiah, M.T.Cholest-3,5-dien-7-one formation in peroxidized human plasma as an indicator of lipoprotein cholesterol peroxidation potentialBiochim. Biophys. Acta1255(3)341-343(1995) 2.Niu, C., Leavitt, L.S., Lin, Z., et al.Neuroactive type-A γ-aminobutyric acid receptor allosteric modulator steroids from the hypobranchial gland of marine mollusk, Conus geographusJ. Med. Chem.64(10)7033-7043(2021)
Ru360, an oxygen-bridged dinuclear ruthenium amine complex, is a selective mitochondrial calcium uptake inhibitor. Ru360 potently inhibits Ca2+ uptake into mitochondria with an IC50 of 0.184 nM. Ru360 binds to mitochondria with high affinity (Kd of 0.34 nM). Ru360 has antiarrhythmic and cardioprotective effects[1][2]. Ru360 permeates slowly into the cell, and specifically inhibits mitochondrial calcium uptake in intact cardiomyocytes and in isolated heart. 1 μm Ru360 is taken up by myocardial cells and accumulated in the cytosol in a biphasic manner[1]. During pelleting hypoxia, Ru360 (10 µM) significantly improves cell viability in wild type cardiomyocytes[3]. Ru360 (15-50 nmol/kg) treatment abolishes the incidence of arrhythmias and haemodynamic dysfunction elicited by reperfusion in a whole rat model. Ru360 administration partially inhibits calcium uptake, preventing mitochondria from depolarization by the opening of the mitochondrial permeability transition pore (mPTP)[1]. [1]. G de J García-Rivas, et al. Ru360, a Specific Mitochondrial Calcium Uptake Inhibitor, Improves Cardiac Post-Ischaemic Functional Recovery in Rats in Vivo. Br J Pharmacol. 2006 Dec;149(7):829-37. [2]. M A Matlib, et al. Oxygen-bridged Dinuclear Ruthenium Amine Complex Specifically Inhibits Ca2+ Uptake Into Mitochondria in Vitro and in Situ in Single Cardiac Myocytes. J Biol Chem. 1998 Apr 24;273(17):10223-31. [3]. Lukas J Motloch, et al. UCP2 Modulates Cardioprotective Effects of Ru360 in Isolated Cardiomyocytes During Ischemia. Pharmaceuticals (Basel). 2015 Aug 4;8(3):474-82.
Pancuronium is an aminosteroid antagonist of muscle-type nicotinic acetylcholine receptors (nAChRs) with an IC50value of 14.8 nM using patch clamp electrophysiology in BOSC23 cells expressing mouse nAChRs.1It acts as a non-depolarizing neuromuscular blocking agent.2Pancuronium enhances anesthesia induced by isoflurane , reducing immobilization with an ED50value of 1.62 μg kg.3 1.Liu, M., and Dilger, J.P.Site selectivity of competitive antagonists for the mouse adult muscle nicotinic acetylcholine receptorMol. Pharmacol.75(1)166-173(2009) 2.Buckett, W.R., Marjoribanks, C.E., Marwick, F.A., et al.The pharmacology of pancuronium bromide (Org.NA97), a new potent steroidal neuromuscular blocking agentBr. J. Pharmacol. Chemother.32(3)671-682(1968) 3.Miyazaki, Y., Sunaga, H., Hobo, S., et al.Pancuronium enhances isoflurane anesthesia in rats via inhibition of cerebral nicotinic acetylcholine receptorsJ. Anesth.30(4)671-676(2016)
Quorum sensing is a regulatory process used by bacteria for controlling gene expression in response to increasing cell density.[1] This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production.[2] Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group) and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family.[3] C16:1-Δ9-(L)-HSL is a long-chain AHL that functions as a quorum sensing signaling molecule in strains of S. meliloti.[4],[5],[6],[7] Regulating bacterial quorum sensing signaling can be used to inhibit pathogenesis and thus, represents a new approach to antimicrobial therapy in the treatment of infectious diseases.[8] Reference:[1]. González, J.E., and Keshavan, N.D. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70(4), 859-875 (2006).[2]. Gould, T.A., Herman, J., Krank, J., et al. Specificity of acyl-homoserine lactone syntheses examined by mass spectrometry. J. Bacteriol. 188(2), 773-783 (2006).[3]. Penalver, C.G.N., Morin, D., Cantet, F., et al. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett. 580(2), 561-567 (2006).[4]. Teplitski, M., Eberhard, A., Gronquist, M.R., et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Archives of Microbiology 180, 494-497 (2003).[5]. Gao, M., Chen, H., Eberhard, A., et al. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. Journal of Bacteriology 187(23), 7931-7944 (2005).[6]. Marketon, M.M., Glenn, S.A., Eberhard, A., et al. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. Journal of Bacteriology 185(1), 325-331 (2003).[7]. Marketon, M., Gronquist, M.R., Eberhard, A., et al. Characterization of the Sinorhizobium meliloti sinR sinI locus and the production of novel N-Acyl homoserine lactones. Journal of Bacteriology 184(20), 5686-5695 (2002).[8]. Cegelski, L., Marshall, G.R., Eldridge, G.R., et al. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6(1), 17-27 (2008).
Quorum sensing is a regulatory system used by bacteria for controlling gene expression in response to increasing cell density.[1] This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production.[2] Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). Regulation of bacterial quorum sensing signaling systems to inhibit pathogenesis represents a new approach to antimicrobial therapy in the treatment of infectious diseases.[3] AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group), and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family.[4] C16-HSL is one of a number of lipophilic, long acyl side-chain bearing AHLs, including its monounsaturated analog C16:1-(L)-HSL, produced by the LuxI AHL synthase homolog SinI involved in quorum-sensing signaling in S. meliloti, a nitrogen-fixing bacterial symbiont of certain legumes.[5],[6] C16-HSL is the most abundant AHL produced by the proteobacterium R. capsulatus and activates genetic exchange between R. capsulatus cells.[7] N-Hexadecanoyl-L-homoserine lactone and other hydrophobic AHLs tend to localize in relatively lipophilic cellular environments of bacteria and cannot diffuse freely through the cell membrane. The long-chain N-acylhomoserine lactones may be exported from cells by efflux pumps or may be transported between communicating cells by way of extracellular outer membrane vesicles.[8],[9]Reference:[1]. González, J.E., and Keshavan, N.D. Messing with bacterial quorum sensing Microbiol. Mol. Biol. Rev. 70(4), 859-875 (2006).[2]. Gould, T.A., Herman, J., Krank, J., et al. Specificity of acyl-homoserine lactone syntheses examined by mass spectrometry Journal of Bacteriology 188(2), 773-783 (2006).[3]. Cegelski, L., Marshall, G.R., Eldridge, G.R., et al. The biology and future prospects of antivirulence therapies Nature Reviews.Microbiology 6(1), 17-27 (2008).[4]. Penalver, C.G.N., Morin, D., Cantet, F., et al. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions FEBS Letters 580, 561-567 (2006).[5]. Gao, M., Chen, H., Eberhard, A., et al. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti Journal of Bacteriology 187(23), 7931-7944 (2005).[6]. Teplitski, M., Eberhard, A., Gronquist, M.R., et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium Archives of Microbiology 180, 494-497 (2003).[7]. Schaefer, A.L., Taylor, T.A., Beatty, J.T., et al. Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production Journal of Bacteriology 184(23), 6515-6521 (2002).[8]. Pearson, J.P., Van Delden, C., and Iglewski, B.H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals Journal of Bacteriology 181(4), 1203-1210 (1999).[9]. Mashburn-Warren, L., and Whiteley, M. Special delivery: Vesicle trafficking in prokaryotes Molecular Microbiology 61(4), 839-846 (2006).
Zonisamide-13C2,15N is intended for use as an internal standard for the quantification of zonisamide by GC- or LC-MS. Zonisamide is an antiepileptic agent.1 It selectively inhibits the repeated firing of sodium channels (IC50 = 2 μg ml) in mouse embryo spinal cord neurons and inhibits spontaneous channel firing when used at concentrations greater than 10 μg ml.2 In rat cerebral cortex neurons, zonisamide (1-1,000 μM) inhibits T-type calcium channels with a maximum reduction of 60% of the calcium current.3 Zonisamide inhibits H. pylori recombinant carbonic anhydrase (CA) and the human CA isoforms I, II, and V with Ki values of 218, 56, 35, and 21 nM, respectively.4,5 In mice, it has anticonvulsant activity against maximal electroshock seizure (MES) and pentylenetetrazole-induced maximal, but not minimal, seizures (ED50s = 19.6, 9.3, and >500 mg kg, respectively). Zonisamide (40 mg kg, p.o.) prevents MPTP-induced decreases in the levels of dopamine , but not homovanillic acid or dihydroxyphenyl acetic acid , and increases MPTP-induced decreases in the dopamine turnover rate in mouse striatum in a model of Parkinson's disease.6 Formulations containing zonisamide have been used in the treatment of partial seizures in adults with epilepsy. |1. Masuda, Y., Ishizaki, M., and Shimizu, M. Zonisamide: Pharmacology and clinical efficacy in epilepsy. CNS Drug Rev. 4(4), 341-360 (1998).|2. Rock, D.M., Macdonald, R.L., and Taylor, C.P. Blockade of sustained repetitive action potentials in cultured spinal cord neurons by zonisamide (AD 810, CI 912), a novel anticonvulsant. Epilepsy Res. 3(2), 138-143 (1989).|3. Suzuki, S., Kawakami, K., Nishimura, S., et al. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res. 12(1), 21-27 (1992).|4. Nishimori, I., Vullo, D., Minakuchi, T., et al. Carbonic anhydrase inhibitors: Cloning and sulfonamide inhibition studies of a carboxyterminal truncated α-carbonic anhydrase from Helicobacter pylori. Bioorg. Med. Chem. Lett. 16(8), 2182-2188 (2006).|5. De Simone, G., Di Fiore, A., Menchise, V., et al. Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: Solution and X-ray crystallographic studies. Bioorg. Med. Chem. Lett. 15(9), 2315-2320 (2005).|6. Yabe, H., Choudhury, M.E., Kubo, M., et al. Zonisamide increases dopamine turnover in the striatum of mice and common marmosets treated with MPTP. J. Pharmacol. Sci. 110(1), 64-68 (2009).
LL-37 is a cationic and α-helical antimicrobial peptide expressed in human bone marrow, testis, granulocytes, and gingival epithelium and is upregulated in psoriatic lesions. It inhibits growth of Gram-positive E. coli D21 and Gram-negative B. megatarium in a concentration-dependent manner and LL-37 expression is induced in A549 epithelial cells, alveolar macrophages, neutrophils, and monocyte-derived macrophages following M. tuberculosis infection. LL-37 binds sheep erythrocytes coated with S. minnesota Re-LPS and induces agglutination with a minimal agglutinating concentration (MAC) of 12.1 μg/ml. It is a chemoattractant for, and can induce calcium mobilization in, human monocytes, neutrophils, and T cells that naturally express formyl peptide receptor-like 1 (FPRL1) and FPRL1-transfected HEK293 cells. LL-37 (10-15 μM) pretreatment of dengue virus type 2 (DENV-2) reduces its infectivity as well as levels of viral genomic RNA and NS1 antigen. In vivo, LL-37 inhibits cecal ligation and puncture-induced caspase-1 activation and pyroptosis of peritoneal macrophages, reduces levels of the inflammatory cytokines IL-1β, IL-6, and TNF-α, and improves survival in polybacterial septic mice.
1,3,5-Trihydroxy-4-prenylxanthone is a relatively potent inhibitor of phosphodiesterase type 5 (PDE5), with an IC50 value of 3.0 μM; it shows in vitro inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with IC50 valu