首页 工具
登录
Venetoclax

Venetoclax

产品编号 T2119   CAS 1257044-40-8
别名: ABT 199, ABT199, 维奈妥拉, GDC-0199, ABT-199

ABT199 是一种高效,口服有效的选择性Bcl-2抑制剂,可诱导自噬,Ki 小于0.01 nM。

TargetMol的所有产品和服务仅用于科学研究,不能被用于人体,我们也不向个人提供产品和服务。
Venetoclax, CAS 1257044-40-8
我们的产品含有多种规格,如需了解具体的规格以及价格信息,请联系我们咨询订购,对于大额的订购,我们还有额外的优惠!
产品咨询
产品目录号及名称: Venetoclax (T2119)
点击图片重新获取验证码
选择批次  
纯度: 99.92%
纯度: 99.71%
纯度: 99%
纯度: 98.71%
更多批次查询请联系客服
生物活性
化学信息
存储 & 溶解度
参考文献
产品描述 ABT-199 is a selective inhibitor of Bcl-2 (Ki < 0.010 nM), binding over 3 orders of magnitude less avidly to Bcl-xL, and Bcl-W (Kis = 48 and 245 nM, respectively).
靶点活性 Bcl-xL:48 nM (Ki, cell free), Bcl-2:<0.01 nM (Ki, cell free)
体外活性 Venetoclax (ABT-199) has a subnanomolar affinity for BCL-2 (Ki < 0.010 nM) and bound over three orders of magnitude less avidly to BCL-XL (Ki = 48 nM) and BCL-W (Ki = 245 nM). ABT-199 has no measurable binding to MCL-1 (Ki > 444 nM). Although ABT-199 potently killed FL5.12–BCL-2 cells (EC50 = 4 nM), it showed much weaker activity against FL5.12–BCL-XL cells (EC50 = 261 nM) [1]. The T-ALL cell line LOUCY, which shows a transcriptional program related to immature T-ALL, exhibited high in vitro and in vivo sensitivity for ABT-199 in correspondence with high levels of BCL-2 [2].
体内活性 After a single oral dose of 12.5 mg/kg in xenografts derived from RS4;11 cells (ALL), ABT-199 caused a maximal tumor growth inhibition (TGImax) of 47% and tumor growth delay (TGD) of 26%. The magnitude and durability of the response increased in a dose-dependent manner, with the highest dose of 100 mg per kg body weight conferring a TGImax of 95% and a TGD of 152% [1]. Some immature, TLX3- or HOXA-positive primary T-ALLs are highly sensitive to BCL-2 inhibition, whereas TAL1 driven tumors mostly showed poor ABT-199 responses [2].
激酶实验 The equilibrium binding experiments of fluorescent peptides to Bcl-xL protein were performed in an Analyst 96-well plate reader under the following conditions: each individual well in a 96-well assay plate contained 5 μl DMSO, 15 nM fluorescent peptide, and increasing concentrations (from 0 to 2.24 μM) of Bcl-xL protein in assay buffer in a final volume of 125 μl. The plate was mixed on a shaker for 1 min and incubated at room temperature for an additional 15 min. The polarization in millipolarization units (mP) was measured at room temperature with an excitation wavelength at 485 nm and an emission wavelength at 530 nm. For assay stability testing, a plate containing a binding experiment was measured at different times over a 24-h period. Between each reading, the plate was covered with parafilm to prevent any solution evaporation. To determine the effect of DMSO on the assay, binding experiments were performed under conditions similar to those described above except that the amount of DMSO was varied from 0 to 4 to 8%. All experimental data were analyzed using Prism 3.0 software and Kd values were generated by fitting the experimental data using a sigmoidal dose-response nonlinear regression model [1].
细胞实验 RS4;11 cells were seeded at 50,000 per well in 96-well plates and treated with compounds diluted in half-log steps starting at 1 μM and ending at 0.00005 μM. All other leukemia and lymphoma cell lines were seeded at 15,000–20,000 cells per well in the appropriate medium and incubated with ABT-199 or navitoclax for 48 h. Effects on proliferation were determined using Cell TiterGlo reagent. EC50 values were determined by nonlinear regression analysis of the concentration-response data. Mouse FL5.12–BCL-2 and FL5.12–BCL-XL cells were propagated and assessed as described previously. Bak?/? Bax?/? double knockout mouse embryonic fibroblasts were seeded into 96-well microtiter plates at 5,000 cells per well in DMEM supplemented with 10% FBS. ABT-199 in the same culture medium was added in half-log dilutions starting at 5 μM. The cells were then incubated at 37 °C (5% CO2) for 48 h, and the effects on proliferation were determined using Cell TiterGlo reagent according to the manufacturer's instructions [1].
动物实验 Female C.B-17 SCID mice (DoHH2 and Granta-519 xenografts) and female C.B-17 SCID-beige mice (RS4;11 and Toledo xenografts) were inoculated with 1 × 10^6 (DoHH2) or 5 × 10^6 (Granta-519, Toledo and RS4;11) cells subcutaneously in the right flank. The inoculation volume (0.2 ml) comprised a 50:50 mixture of cells in growth media and Matrigel. Electronic calipers were used to measure the length and width of each tumor 2–3 times per week. Tumor volume was estimated by applying the following equation: volume = length × width2/2. When tumors reached approximately 220 mm3, mice were size matched (day 0) into treatment and control groups. All xenograft trials were conducted using ten mice per group, and all mice were ear tagged and monitored individually throughout the studies. ABT-199 was formulated for oral dosing in 60% phosal 50 propylene glycol (PG), 30% polyethylene glycol (PEG) 400 and 10% ethanol, and bendamustine and rituximab were formulated in accordance with the manufacturer's instructions. ABT-199 was delivered approximately 2 h before bendamustine or bendamustine plus rituximab. TGImax was calculated as the greatest treatment response using the following equation: TGImax = (1 ? mean tumor volume of the treated group/mean tumor volume of the vehicle control group) × 100. The TGD (%) was determined as the percentage increase of the median time period for the treatment group to reach an arbitrary tumor volume of 1,000 mm3 relative to the vehicle control group. A complete tumor regression response was the portion of the population with tumors ≤25 mm3 for at least three consecutive measurements [1].
别名 ABT 199, ABT199, 维奈妥拉, GDC-0199, ABT-199
化合物与蛋白结合的复合物

T2119_2

crystal structure of BCL-2 with venetoclax

分子量 868.44
分子式 C45H50ClN7O7S
CAS No. 1257044-40-8

存储

Powder: -20°C for 3 years | In solvent: -80°C for 2 years

溶解度

H2O: <1 mg/mL

Ethanol: <1 mg/mL

DMSO: 100mg/mL

( < 1 mg/mL refers to the product slightly soluble or insoluble )

参考文献

1. Souers AJ, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013 Feb;19(2):202-8. 2. Peirs S, et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood. 2014 Dec 11;124(25):3738-47. 3. Lee J B, Khan D H, Hurren R, et al. Venetoclax enhances T cell-mediated anti-leukemic activity by increasing ROS production[J]. Blood. 2021 4. Suarez M, Blyth G T, Mina A A, et al. Inhibitory effects of Tomivosertib in acute myeloid leukemia[J]. Oncotarget. 2021, 12(10): 955. 5. Capoci I R G, Faria D R, Sakita K M, et al. Repurposing approach identifies new treatment options for invasive fungal disease[J]. Bioorganic chemistry. 2019 Mar;84:87-97.

文献引用

1. Lima K, Pereira-Martins D A, de Miranda L B L, et al.The PIP4K2 inhibitor THZ-P1-2 exhibits antileukemia activity by disruption of mitochondrial homeostasis and autophagy.Blood cancer journal.2022, 12(11): 1-11. 2. Pan G, Zhong M, Yao J, et al.Orelabrutinib and venetoclax synergistically induce cell death in double-hit lymphoma by interfering with the crosstalk between the PI3K/AKT and p38/MAPK signaling.Journal of Cancer Research and Clinical Oncology.2022: 1-17. 3. Gao P, Zhang W, Fang X, et al.Simultaneous quantification of venetoclax and voriconazole in human plasma by UHPLC-MS/MS and its application in acute myeloid leukemia patients.Journal of Pharmaceutical and Biomedical Analysis.2023: 115279. 4. Li Z, Pan G, Zhong M, et al.High-Throughput Drug Screen for Potential Combinations With Venetoclax Guides the Treatment of Transformed Follicular Lymphoma.International Journal of Toxicology.2023: 10915818231178693. 5. e Silva, Catarina Sofia Mateus Reis, et al. Embelin potentiates venetoclax-induced apoptosis in acute myeloid leukemia cells. Toxicology in Vitro. (2021): 105207. 6. Takei H, Coelho‐Silva J L, Leal C T, et al. Suppression of multiple anti‐apoptotic BCL2 family proteins recapitulates the effects of JAK2 inhibitors in JAK2V617F driven myeloproliferative neoplasms. Cancer Science. 2022, 113(2): 597. 7. Suarez M, Blyth G T, Mina A A, et al. Inhibitory effects of Tomivosertib in acute myeloid leukemia. Oncotarget. 2021, 12(10): 955. 8. Tang J, Yao C, Liu Y, et al. Arsenic trioxide induces expression of BCL-2 expression via NF-κB and p38 MAPK signaling pathways in BEAS-2B cells during apoptosis. Ecotoxicology and Environmental Safety. 2021, 222: 112531. 9. Tan M, Ren F, Yang X. Anti-HBV therapeutic potential of small molecule 3, 5, 6, 7, 3′, 4′-Hexamethoxyflavone in vitro and in vivo. Virology. 2021 10. Lee J B, Khan D H, Hurren R, et al. Venetoclax enhances T cell-mediated anti-leukemic activity by increasing ROS production. Blood. 2021 Jul 22;138(3):234-245. doi: 10.1182/blood.2020009081.
GC7 Sulfate ATG7-IN-1 Rapamycin Salinomycin sodium salt Ecdysone Gemcitabine monophosphate sodium salt hydrate Corynoxine B Eupatolide

相关化合物库

该产品包含在如下化合物库中:
PPI抑制剂库 铜死亡化合物库 抗癌活性化合物库 自噬库 上市药物库 已知活性化合物库 肝脏毒性化合物库 靶向治疗药物库 临床期小分子药物库 药物功能重定位化合物库

剂量换算

对于不同动物的给药剂量换算,您也可以参考 更多...

体内实验配液计算器

请在以下方框中输入您的动物实验信息后点击计算,可以得到母液配置方法和体内配方的制备方法: 比如您的给药剂量是10 mg/kg,每只动物体重20 g,给药体积100 μL,一共给药动物10 只,您使用的配方为5% DMSO+30% PEG300+5% Tween 80+60% ddH2O。那么您的工作液浓度为2 mg/mL。

母液配置方法:2 mg 药物溶于 50 μL DMSO (母液浓度为 40 mg/mL), 如您需要配置的浓度超过该产品的溶解度,请先与我们联系。

体内配方的制备方法:取 50 μL DMSO 主液,加入 300 μL PEG300, 混匀澄清,再加 50 μL Tween 80,混匀澄清,再加 600 μL ddH2O, 混匀澄清。

第一步:请输入动物实验的基本信息
剂量
mg/kg
每只动物体重
g
给药体积
μL
动物数量
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
% DMSO
%
% Tween 80
% ddH2O
计算 重置

计算器

摩尔浓度计算器
稀释计算器
配液计算器
分子量计算器
=
X
X
X
=
X
=
/
g/mol

输入分子式,点击计算,可计算出产品的分子量。

bottom

技术支持

您可能有的问题的答案可以在抑制剂处理说明中找到,包括如何准备库存溶液,如何存储产品,以及基于细胞的分析和动物实验需要特别注意的问题。

Keywords

Venetoclax 1257044-40-8 Apoptosis Autophagy BCL bioavailable ABT 199 orally inhibit Inhibitor Bcl-2 Family GDC0199 ABT199 GDC 0199 维奈妥拉 GDC-0199 ABT-199 inhibitor

 

陶术
生物
TargetMol®中国区唯一合作伙伴
点击进入陶术生物官网陶术生物
联系我们
400-820-0310

上海市静安区江场三路238号8楼