首页 工具
登录
购物车
Rapamycin

Rapamycin

产品编号 T1537   CAS 53123-88-9
别名: Sirolimus, AY 22989, 雷帕霉素, NSC-2260804

Rapamycin (AY 22989) 属于大环内酯类天然产物,是一种 mTOR 抑制剂,具有特异性(HEK293 细胞:IC50=0.1 nM)。Rapamycin 具有免疫抑制活性,并能诱导自噬

TargetMol的所有产品和服务仅用于科学研究,不能被用于人体,我们也不向个人提供产品和服务。
Rapamycin Chemical Structure
Rapamycin, CAS 53123-88-9
规格 价格/CNY 货期 数量
1 mg ¥ 133 现货
5 mg ¥ 283 现货
10 mg ¥ 455 现货
25 mg ¥ 619 现货
50 mg ¥ 892 现货
100 mg ¥ 1,230 现货
200 mg ¥ 1,850 现货
500 mg ¥ 3,150 现货
1 mL * 10 mM (in DMSO) ¥ 490 现货
其他形式的 Rapamycin:
千万补贴 助力科研
BCA蛋白浓度测定试剂盒限时半价
重组蛋白限时优惠
产品目录号及名称: Rapamycin (T1537)
点击图片重新获取验证码
选择批次  
TargetMol batch loading
更多批次查询请联系客服
天然产物信息
生物活性
化学信息
存储 & 溶解度
参考文献
产品描述 Rapamycin (AY 22989) is a natural product of macrolides, an mTOR inhibitor with specificity (HEK293 cells: IC50=0.1 nM). Rapamycin has immunosuppressive activity and induces autophagy.
靶点活性 mTOR:0.1 nM (HEK293 cells)
体外活性 方法:正常人肾上皮细胞 HRECs 用 Rapamycin (0.01-1000 nmol/L) 处理 6 天,使用 MTT 方法检测细胞生长抑制情况。
结果:Rapamycin 剂量依赖性地抑制 HRECs 细胞生长,在10 nmol/L 的浓度下,细胞活力降低了40%。[1]
方法:人宫颈癌细胞 HeLa 和人前列腺癌细胞 PC3 用 Rapamycin (100 mM) 处理 0.5-24 h,使用 Immunoprecipitation 方法检测靶点蛋白表达水平。
结果:Rapamycin 对 mTOR、raptor 和 rictor 的表达水平影响不大,在 0.5 h 内显著降低了与 mTOR 结合的 raptor,在 24 h 时降低了与 mTOR 结合的 rictor。Rapamycin 长期处理细胞抑制 mTORC2 的组装。[2]
方法:人血管内皮细胞用 Rapamycin (1-100 ng/mL) 处理 48 h,使用 Wound-healing 方法检测细胞迁移情况。
结果:Rapamycin 剂量依赖性地抑制人血管内皮细胞的迁移能力。[3]
体内活性 方法:为研究 Rapamycin 寿命的影响,将 Rapamycin (8 mg/kg in DMSO+5% PEG-400+5% Tween-80) 腹腔注射给 20–21 个月大的 C57BL/6J 小鼠,每天一次,持续三个月。
结果:Rapamycin 治疗 3 个月足以将中年小鼠的预期寿命提高60%,并改善其健康寿命。[4]
方法:为确定 Rapamycin 治疗癫痫的合适剂量,将 Rapamycin (0.1-3 mg/kg in 4% ethanol+5% Tween 80+5% PEG 400) 腹腔注射给 Sprague-Dawley 大鼠,每天一次,持续四周。
结果:只有 1.0 mg/kg 和 3.0 mg/kg Rapamycin 抑制 p-S6。用 0.1 和 0.3 mg/kg Rapamycin 处理的大鼠没有明显的不良反应,而用 1.0 和 3.0 mg/kg Rapamycin 处理的大鼠的身体、脾脏和胸腺重量显著降低,表现出认知障碍和焦虑。Rapamycin 剂量不能抑制 mTOR 治疗癫痫而不引起任何副作用,但 1 mg/kg 可能是年轻大鼠抑制 mTOR 的最佳剂量,副作用相对较少。[5]
激酶实验 HEK293 cells were plated at 2-2.5 × 10^5 cells per well of a 12-well plate and serum-starved for 24 h in DMEM only. Cells were mock-treated or treated with rapamycin (0.05-50 nM), iRap (0.5-500 nM), or AP21967 (0.5-500 nM) for 15 minutes at 37 °C. Serum was added to a final concentration of 20% for 30 minutes at 37 °C. Cells were lysed as described and cell lysates were separated by SDS-PAGE. Resolved proteins were transferred to a PVDF membrane and immunoblotted with a phosphospecific primary antibody against Thr389 of p70 S6 kinase. Data were analyzed using ImageQuant and KaleidaGraph [1].
细胞实验 To determine the effects of rapamycin and rapamycin plus LY294002 or UCN-01 on tumor cells, we determined cell viability after the treatments. We used a trypan blue dye exclusion assay as described previously. Tumor cells in exponential growth were harvested and seeded at 5 × 10^3 cells per well (0.1 mL) in 96-well flat-bottomed plates and incubated overnight at 37°C. The cells were then incubated for 72 hours with or without rapamycin or with rapamycin plus LY294002 or UCN-01. After the cells were collected by trypsinization, they were stained with trypan blue, and the viable cells in each well were counted. The viability of the untreated cells (the control) was considered 100%. Survival fractions were calculated from the mean cell viability of the treated cells [3].
动物实验 Animals were randomized to treatment or vehicle groups so that the mean starting body weights of each group were equal. Drug treatment began on the day of surgery or on the first day of reloading after the 14-day suspension. Rapamycin was delivered once daily by intraperitoneal injection at a dose of 1.5 mg/kg, dissolved in 2% carboxymethylcellulose. CsA was delivered once daily by subcutaneous injection at a dose of 15 mg/kg, dissolved in 10% methanol and olive oil. FK506 was delivered once daily via subcutaneous injection at a dose of 3 mg/kg, dissolved in 10% ethanol, 10% cremophor and saline [4].
别名 Sirolimus, AY 22989, 雷帕霉素, NSC-2260804
化合物与蛋白结合的复合物

T1537_2

Cryo-EM Structure of Saccharomyces cerevisiae Target of Rapamycin Complex 2

分子量 914.17
分子式 C51H79NO13
CAS No. 53123-88-9

存储

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度

Ethanol: 100mg/mL (109 mM), Sonication is recommended.

H2O: Insoluble

DMSO: 100 mg/mL (109 mM), Sonication is recommended.

溶液配制表

可选溶剂 浓度 体积 质量 1 mg 5 mg 10 mg 25 mg
Ethanol / DMSO 1 mM 1.0939 mL 5.4694 mL 10.9389 mL 27.3472 mL
5 mM 0.2188 mL 1.0939 mL 2.1878 mL 5.4694 mL
10 mM 0.1094 mL 0.5469 mL 1.0939 mL 2.7347 mL
20 mM 0.0547 mL 0.2735 mL 0.5469 mL 1.3674 mL
50 mM 0.0219 mL 0.1094 mL 0.2188 mL 0.5469 mL
100 mM 0.0109 mL 0.0547 mL 0.1094 mL 0.2735 mL

TargetMol Calculator计算器

摩尔浓度计算器
稀释计算器
配液计算器
分子量计算器
=
X
X
X
=
X
=
/
g/mol

输入分子式,点击计算,可计算出产品的分子量。

TargetMol Library Books参考文献

1. Pallet N, et al. Rapamycin inhibits human renal epithelial cell proliferation: effect on cyclin D3 mRNA expression and stability. Kidney Int. 2005 Jun;67(6):2422-33. 2. Sarbassov DD, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006 Apr 21;22(2):159-68. 3. Si Y, et al. Concentration-dependent effects of rapamycin on proliferation, migration and apoptosis of endothelial cells in human venous malformation. Exp Ther Med. 2018 Dec;16(6):4595-4601. 4. Bitto A, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016 Aug 23;5:e16351. 5. Bishu K, et al. Anti-remodeling effects of rapamycin in experimental heart failure: dose response and interaction with angiotensin receptor blockade. PLoS One. 2013 Dec 3;8(12):e81325. 6. Zhang JW, et al. Metformin synergizes with rapamycin to inhibit the growth of pancreatic cancer in vitro and in vivo. Oncol Lett. 2018 Feb;15(2):1811-1816. 7. Gao C, Wang H, Wang T, et al. Platelet CLEC‐2 regulates neuroinflammation and restores blood brain barrier integrity in a mouse model of traumatic brain injury[J]. Journal of Neurochemistry. 2020: e14983. 8. Zhang T, Tian C, Wu J, et al. . MicroRNA‐182 exacerbates blood‐brain barrier (BBB) disruption by downregulating the mTOR/FOXO1 pathway in cerebral ischemia[J].  The FASEB Journal. 2020, 34(10): 13762-13775. 9. Shang Z, Zhang T, Jiang M, et al. High-carbohydrate, High-fat Diet-induced Hyperlipidemia Hampers the Differentiation Balance of Bone Marrow Mesenchymal Stem Cells by Suppressing Autophagy via the AMPK/mTOR Pathway in Rat Models[J]. 2020. 10. Zhao, Ming, et al. GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nature Communications . 12.1 (2021): 1-14.

TargetMol Library Books文献引用

1. Yan C, Zheng L, Jiang S, et al.Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity.Cancer Cell.2023 2. Cai Z, Wu X, Song Z, et al.Metformin potentiates nephrotoxicity by promoting NETosis in response to renal ferroptosis.Cell Discovery.2023, 9(1): 104. 3. Yu Q, Li C, Niu Q, et al.Hepatic COX1 loss leads to impaired autophagic flux and exacerbates nonalcoholic steatohepatitis.Acta Pharmaceutica Sinica B.2023 4. Zhuang J, Shen L, Li M, et al.Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance.Cancer Research.2023: CAN-22-2213. 5. Ma W, Wu Q, Wang S, et al.A breakdown of metabolic reprogramming in microglia induced by CKLF1 exacerbates immune tolerance in ischemic stroke.Journal of Neuroinflammation.2023, 20(1): 1-23. 6. Cao Y, Chen X, Pan F, et al.Xinmaikang-mediated Mitophagy Attenuates Atherosclerosis via the PINK1/Parkin Signaling Pathway.Phytomedicine.2023: 154955. 7. Long T, Chen X, Zhang Y, et al.Protective effects of Radix Stellariae extract against Alzheimer's disease via autophagy activation in Caenorhabditis elegans and cellular models.Biomedicine & Pharmacotherapy.2023, 165: 115261. 8. Liu X, Xi H, Han S, et al.Zearalenone induces oxidative stress and autophagy in goat Sertoli cells.Ecotoxicology and Environmental Safety.2023, 252: 114571. 9. Han S, Zhang H, Liu X, et al.Enhanced autophagy reversed aflatoxin B1-induced decrease in lactate secretion of dairy goat Sertoli cells.Ecotoxicology and Environmental Safety.2023, 259: 115063. 10. Li W Y, Shi T S, Huang J, et al.Activation of the mTORC1 signaling cascade in the hippocampus and medial prefrontal cortex is required for the antidepressant actions of vortioxetine in mice.International Journal of Neuropsychopharmacology.2023: pyad017.
11. Zhang Z, Lu Y, Zhang H, et al.Enriched environment ameliorates fear memory impairments induced by sleep deprivation via inhibiting PIEZO1/calpain/autophagy signaling pathway in the basal forebrain.CNS Neuroscience & Therapeutics.2023 12. Tu W, Qin M, Li Y, et al.Metformin regulates autophagy via LGMN to inhibit choriocarcinoma.Gene.2022: 147090. 13. Hu J, Ling Z, Li W, et al.Glutamine promotes the proliferation of epithelial cells via mTOR/S6 pathway in oral lichen planus.Journal of Oral Pathology & Medicine.2022 14. Wu D, Sun X, Zhao Y, et al.Strontium Ranelate Inhibits Osteoclastogenesis through NF-κB-Pathway-Dependent Autophagy.Bioengineering.2023, 10(3): 365. 15. Qi Xiang,Pin Wan,Ge Yang,Siyu Huang,Mengying Qin. Beclin1 Binds to Enterovirus 71 3D Protein to Promote the Virus Replication. Viruses-Basel. 2020, 12(7): 756 16. Lu J, Wang C, Cheng X, et al. A breakdown in microglial metabolic reprogramming causes internalization dysfunction of α-synuclein in a mouse model of Parkinson’s disease. Journal of Neuroinflammation. 2022, 19(1): 1-21 17. Gao C, Yan Y, Chen G, et al. Autophagy Activation Represses Pyroptosis through the IL-13 and JAK1/STAT1 Pathways in a Mouse Model of Moderate Traumatic Brain Injury. ACS Chemical Neuroscience. 2020 18. Cao L, Zhao J, Ma L, et al. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor signaling pathway. Ecotoxicology and Environmental Safety. 2021, 225: 112737. 19. Wang J L, Wang Y, Gao T T, et al. Venlafaxine protects against chronic stress-related behaviors in mice by activating the mTORC1 signaling cascade. Journal of Affective Disorders. 2020, 276: 525-536. 20. Lei Y, Zhang X, Xu Q, et al. Autophagic elimination of ribosomes during spermiogenesis provides energy for flagellar motility. Developmental Cell. 2021, 56(16): 2313-2328. e7 21. Sun S, Hu Y, Zheng Q, et al. Poly(ADP‐ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity. Journal of Cellular Biochemistry. 2019, 120(4): 4813-4826 22. Gao C, Wang H, Wang T, et al. Platelet regulates neuroinflammation and restores blood–brain barrier integrity in a mouse model of traumatic brain injury. Journal of Neurochemistry. 2020 23. Guo X, Wang C, Xu T, et al. SiO 2 prompts host defense against Acinetobacter baumannii infection by mTORC1 activation. Science China Life Sciences. 2020: 1-9. 24. Su Q, Wang J, Liu F, et al. Blocking Parkin/PINK1-mediated mitophagy sensitizes hepatocellular carcinoma cells to sanguinarine-induced mitochondrial apoptosis. Toxicology in Vitro. 2020: 104840 25. Yuan, Shizhu, et al. ATF4-dependent heme-oxygenase-1 attenuates diabetic nephropathy by inducing autophagy and inhibiting apoptosis in podocyte. Renal Failure. 43.1 (2021): 968-979. 26. Su G, Yang W, Wang S, et al. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Β and IL-18. Biochemical and Biophysical Research Communications. 2021, 561: 33-39. 27. Wu Z, You Z, Chen P, et al. Matrine Exerts Antidepressant-Like Effects on Mice: Role of the Hippocampal PI3K/Akt/mTOR Signaling. International Journal of Neuropsychopharmacology. 2018, 21(8): 764-776 28. Xu D, Sun Y, Wang C, et al. Hippocampal mTOR signaling is required for the antidepressant effects of paroxetine. Neuropharmacology. 2018 Jan;128:181-195 29. Ni T, Gao F, Zhang J, et al. Impaired autophagy mediates hyperhomocysteinemia-induced HA-VSMC phenotypic switching. Journal of Molecular Histology. 2019 Apr 26: 1-10 30. Qin Q, Li M, Gu M, et al. Stk24 protects against obesity-associated metabolic disorders by disrupting the NLRP3 inflammasome. Cell Reports. 2021, 35(8): 109161. 31. Yang J, Li J, Guo H, et al. An Experimental Study Reveals the Protective Effect of Autophagy against Realgar-Induced Liver Injury via Suppressing ROS-Mediated NLRP3 Inflammasome Pathway. International Journal of Molecular Sciences. 2022, 23(10): 5697 32. Gao C, Wang H, Wang T, et al. Platelet CLEC‐2 regulates neuroinflammation and restores blood brain barrier integrity in a mouse model of traumatic brain injury. Journal of Neurochemistry. 2020: e14983 33. Sanders D W, Jumper C C, Ackerman P J, et al. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. Elife. 2021, 10: e65962. 34. Xu D, Wang C, Zhu X, et al. The antidepressant-like effects of fluvoxamine in mice involve the mTOR signaling in the hippocampus and prefrontal cortex. Psychiatry research. 2020 Mar;285:112708. doi: 10.1016/j.psychres.2019.112708. Epub 2019 Nov 25. 35. Fu Y H, Tseng C Y, Lu J W, et al. Deciphering the Role of Pyrvinium Pamoate in the Generation of Integrated Stress Response and Modulation of Mitochondrial Function in Myeloid Leukemia Cells through Transcriptome Analysis. Biomedicines. 2021, 9(12): 1869. 36. Zhang T, Tian C, Wu J, et al. MicroRNA-182 exacerbates blood-brain barrier (BBB) disruption by downregulating the mTOR/FOXO1 pathway in cerebral ischemia. The FASEB Journal. 2020, 34(10): 13762-13775 37. Hu A, Zhang J Z, Wang J, et al. Cholesterylation of Smoothened is a calcium-accelerated autoreaction involving an intramolecular ester intermediate. Cell Research. 2022, 32(3): 288-301. 38. Tu W, Qin M, Li Y, et al.Metformin regulates autophagy via LGMN to inhibit choriocarcinoma.Gene.2022: 147090. 39. Yang D L, Zhang Y, He L, et al. Demethylzeylasteral (T-96) Initiates Extrinsic Apoptosis Against Prostate Cancer cells by Inducing ROS-Mediated ER Stress and Suppressing Autophagic Flux. Biological Research. 2021, 54(1): 1-14. 40. Han S, Zhu T, Ding S, et al. Early growth response genes 2 and 3 induced by AP-1 and NF-κB modulate TGF-β1 transcription in NK1. 1− CD4+ NKG2D+ T cells. Cellular Signalling. 2020, 76: 109800. 41. Qiu W Q, Ai W, Zhu F D, et al. Polygala saponins inhibit NLRP3 inflammasome-mediated neuroinflammation via SHP-2-Mediated mitophagy. Free Radical Biology and Medicine. 2022, 179: 76-94. 42. Li W, Luo L X, Zhou Q Q, et al. Phospholipid peroxidation inhibits autophagy via stimulating the delipidation of oxidized LC3-PE. Redox Biology. 2022: 102421. 43. Liu Y, Zhang Y, Zhang M, et al. Activated autophagy restored the impaired frequency and function of regulatory T cells in chronic prostatitis. The Prostate. 2021, 81(1): 29-40 44. Yang D, Liu H, Cai Y, et al. Branched-chain amino acid catabolism breaks glutamine addiction to sustain hepatocellular carcinoma progression. Cell Reports. 2022, 41(8): 111691. 45. Zhang Y, Ding Y, Li M, et al. MicroRNA-34c-5p provokes isoprenaline-induced cardiac hypertrophy by modulating autophagy via targeting ATG4B. Acta Pharmaceutica Sinica B. 2021 46. Wang Y, Ji L, Peng Z, et al. Silencing DAPK3 blocks the autophagosome-lysosome fusion by mediating SNAP29 in trophoblast cells under high glucose treatment. Molecular and Cellular Endocrinology. 2020, 502: 110674 47. Yang Z, Guo D, Zhao J, et al.Aggf1 Specifies Hemangioblasts at the Top of Regulatory Hierarchy via Npas4l and mTOR-S6K-Emp2-ERK Signaling.Arteriosclerosis, Thrombosis, and Vascular Biology.2023 48. Hong J H, Yong C H, Heng H L, et al.Integrative multiomics enhancer activity profiling identifies therapeutic vulnerabilities in cholangiocarcinoma of different etiologies.Gut.2023 49. Zhang X, Wang J, Wang M, et al.IFN-β Pretreatment Alleviates Allogeneic Renal Tubular Epithelial Cell–Induced NK Cell Responses via the IRF7/HLA-E/NKG2A Axis.The Journal of Immunology.2023 50. Han Y, Wang C, Lu K, et al.Bovine parainfluenza type 3 virus induces incomplete autophagy to promote viral replication by activated beclin1 in vitro.Veterinary Microbiology.2024: 109972. 51. Wu A G, Yong Y Y, He C L, et al.Novel 18-Norspirostane Steroidal Saponins: Extending Lifespan and Mitigating Neurodegeneration through Promotion of Mitophagy and Mitochondrial Biogenesis in Caenorhabditis elegans.Mechanisms of Ageing and Development.2024: 111901. 52. Liu Y J, Wang J Y, Zhang X L, et al.Ataxin‐2 sequesters Raptor into aggregates and impairs cellular mTORC1 signaling.The FEBS Journal.2024 53. Chen X, Cao Y, Guo Y, et al.microRNA-125b-1-3p mediates autophagy via the RRAGD/mTOR/ULK1 signaling pathway and mitigates atherosclerosis progression.Cellular Signalling.2024: 111136. 54. Liu S, Su L, Li J, et al.Inhibition of miR-146b-5p alleviates isoprenaline-induced cardiac hypertrophy via regulating DFCP1.Molecular and Cellular Endocrinology.2024: 112252. 55. Tai G J, Ma Y J, Feng J L, et al.NLRP3 inflammasome-mediated premature immunosenescence drives diabetic vascular aging dependent on the induction of perivascular adipose tissue dysfunction.Cardiovascular Research.2024: cvae079.
收起
Bisphenol A Salicylic acid 1,2-Dipalmitoyl-sn-glycerol Menadione Dodecanoylcarnitine OMDM-6 3-Methyl-2-buten-1-ol Hyaluronic acid

相关化合物库

该产品包含在如下化合物库中:
FDA 上市激酶抑制剂库 抗癌上市药物库 药物功能重定位化合物库 抗癌药物库 激酶抑制剂库 抗癌活性化合物库 微生物天然产物库 抑制剂库 抗癌临床化合物库 口服活性化合物库

TargetMol Calculator剂量换算

对于不同动物的给药剂量换算,您也可以参考 更多...

TargetMol Calculator 体内实验配液计算器

请在以下方框中输入您的动物实验信息后点击计算,可以得到母液配置方法和体内配方的制备方法: 比如您的给药剂量是10 mg/kg,每只动物体重20 g,给药体积100 μL,一共给药动物10 只,您使用的配方为5% DMSO+30% PEG300+5% Tween 80+60% ddH2O。那么您的工作液浓度为2 mg/mL。

母液配置方法:2 mg 药物溶于 50 μL DMSO (母液浓度为 40 mg/mL), 如您需要配置的浓度超过该产品的溶解度,请先与我们联系。

体内配方的制备方法:取 50 μL DMSO 主液,加入 300 μL PEG300, 混匀澄清,再加 50 μL Tween 80,混匀澄清,再加 600 μL ddH2O, 混匀澄清。

第一步:请输入动物实验的基本信息
剂量
mg/kg
每只动物体重
g
给药体积
μL
动物数量
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
% DMSO
%
% Tween 80
% ddH2O
计算 重置

技术支持

您可能有的问题的答案可以在抑制剂处理说明中找到,包括如何准备库存溶液,如何存储产品,以及基于细胞的分析和动物实验需要特别注意的问题。

Keywords

Rapamycin 53123-88-9 Autophagy Metabolism Microbiology/Virology Others PI3K/Akt/mTOR signaling Endogenous Metabolite Antibiotic mTOR Antifungal Sirolimus AY22989 Bacterial FK506-binding protein immunosuppressant mTORC1 AY 22989 Fungal 雷帕霉素 Mammalian target of Rapamycin inhibit AY-22989 Inhibitor NSC-2260804 NSC2260804 HEK293 FKBP12 FKBP NSC 2260804 inhibitor

 

TargetMol Loading
陶术
生物
TargetMol®中国区唯一合作伙伴
点击进入陶术生物官网陶术生物
联系我们
400-820-0310

上海市静安区江场三路238号8楼