Givinostat (ITF-2357) is a HDAC inhibitor with an IC50 of 198 and 157 nM for HDAC1 and HDAC3, respectively. Givinostat (ITF2357) suppresses total LPS-induced IL-1β production robustly compared with the reduction by ITF3056. At 25, 50, and 100 nM, Givinostat reduced IL-1β secretion more than 70%. Givinostat (ITF-2357) suppresses the production of IL-6 in PBMCs stimulated with TLR agonists as well as the combination of IL-12 plus IL-18. IL-6 secretion decreases to 50% at 50 nM Givinostat, but at 100 and 200 nM, there is no reduction[1]. As shown by the CCK-8 assay, Givinostat (ITF-2357) inhibits JS-1 cell proliferation in a concentration-dependent manner. Treatment with Givinostat ≥500 nM is associated with significant inhibition of JS-1 cell proliferation (P<0.01). Also, the cell inhibition rate significantly differs between the group cotreated with Givinostat ≥250 nM plus LPS and the group without LPS treatment (same Givinostat concentration) (P<0.05)[2]. Givinostat (ITF2357) at 10 mg kg is used as a positive control and, as expected, reduced serum TNFα by 60%. Strikingly, pretreatment of ITF3056 starting at 0.1 mg kg significantly reduces the circulating TNFα by nearly 90%. To achieve a significant increase in serum IL-1β production, a higher dose of LPS is injected (10 mg kg), and blood is collected after 4 h. Similarly, when pretreated with lower doses of Givinostat (ITF-2357) (1 or 5 mg kg), there is a 22% reduction for 1 mg kg and 40% for 5 mg kg[1]. [1]. Li S, et al. Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo. J Biol Chem. 2015 Jan 23;290(4):2368-78. [2]. Wang YG, et al. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation. World J Gastroenterol. 2015 Jul 21;21(27):8326-39. [3]. Leoni F, et al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med. 2005 Jan-Dec;11(1-12):1-15.
Fmoc-Leu-OH-d10 是 Fmoc-Leu-OH 的氘代化合物。Fmoc-Leu-OH 的 CAS 号为 35661-60-0。NPC 15199 是选择性的PPARγ调节剂。它对 PPARγ 的激活效果比罗格列酮低,但二者最大效应相似。它能够改善正常、饮食诱导的葡萄糖不耐受和糖尿病 db db 小鼠的胰岛素敏感性,一定程度上能够诱导脂肪生成。
β-Defensin-1 is a peptide with antimicrobial properties that protects the skin and mucosal membranes of the respiratory, genitourinary, and gastrointestinal tracts.1It inhibits the growth ofB. adolescentis,L. acidophilus,B. breve,B. vulgatus,L. fermentum,B. longum, andS. thermophilusin an antimicrobial radial diffusion assay.2β-Defensin-1 also inhibits the growth of periodontopathogenic and cariogenic bacteria, includingP. gingivalisandS. salivarius, and of susceptibleM. tuberculosisH37Rv but not of resistantM. tuberculosisRM22 when used at a concentration of 128 μg/ml.3,4It blocks human and mouse Kv1.3 voltage-gated potassium channels (IC50s = 11.8 and 13.2 μM, respectively).5Overexpression of β-defensin-1 in the human oral squamous cell carcinoma (OSCC) cell lines HSC-3, UM-1, and SCC-9 increases migration and invasion but not proliferation.6 1.Lehrer, R.I.Primate defensinsNat. Rev. Microbiol.2(9)727-738(2004) 2.Schroeder, B.O., Ehmann, D., Precht, J.C., et al.Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptideMucosal Immunol.8(3)661-671(2015) 3.Ouhara, K., Komatsuzawa, H., Yamada, S., et al.Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, β-defensins and LL37, produced by human epithelial cellsJ. Antimicrob. Chemother.55(6)888-896(2005) 4.Fattorini, L., Gennaro, R., Zanetti, M., et al.In vitro activity of protegrin-1 and beta-defensin-1, alone and in combination with isoniazid, against Mycobacterium tuberculosisPeptides25(7)1075-1077(2004) 5.Feng, J., Xie, Z., Yang, W., et al.Human beta-defensin 1, a new animal toxin-like blocker of potassium channelToxicon113(2016) 6.Han, Q., Wang, R., Sun, C., et al.Human beta-defensin-1 suppresses tumor migration and invasion and is an independent predictor for survival of oral squamous cell carcinoma patientsPLoS One9(3)e91867(2014)