CHS-111 is a benzyl indazole compound. CHS-111 inhibits superoxide anion (O(2)(-)) generation. CHS-111 reduces the fMLP-stimulated PLD activity (IC(50) 3.9±1.2μM). CHS-111 inhibits the interaction of PLD1 with ADP-ribosylation factor (Arf) 6 and Ras homol
1-O-Octadecyl-2-O-methyl-sn-glycerol is a metabolite of a phosphotidylinositol ether lipid analog (PIA). PIAs are known to target the pleckstrin homology domain of the serine threonine kinase Akt and to induce apoptosis in cancer cell lines with high levels of endogenous Akt activity.
PtdIns-(3,4,5)-P3 (PIP3) serves as an anchor for the binding of signal transduction proteins bearing pleckstrin homology (PH) domains such as phosphatidylinositol 3-kinase (PI3K) or PTEN. Protein binding to PIP3 is important for cytoskeletal rearrangement and membrane trafficking and initiates an intricate signaling cascade that has been implicated in cancer. 3,5-dimethyl PIT-1 is a dimethyl analog of PIT-1, the selective inhibitor of PIP3 Akt PH domain binding, that is designed for more favorable solubility in vivo. 3,5-dimethyl PIT-1 inhibits PI3K Akt signaling (IC50 = 27 μM), suppressing PI3K-PDK1-Akt-dependent phosphorylation, which has been shown to reduce cell viability and induce apoptosis in PTEN-deficient U87MG glioblastoma cells (IC50 = 36 μM). 4T1 breast cancer growth is significantly attenuated in BALB c mice with a dose of 1 mg kg of 3,5-dimethyl PIT-1 per day.
Urocortin II is a neuropeptide hormone and member of the corticotropin-releasing factor (CRF) family which includes mammalian CRF , urocortin , urocortin III , frog sauvagine, and piscine urotensin I.1 Mouse urocortin II shares 34 and 42% sequence homology with rat CRF and urocortin . It is expressed in mouse paraventricular, supraoptic, and arcuate nuclei of the hypothalamus, the locus coeruleus, and in motor nuclei of the brainstem and spinal ventral horn. Urocortin II selectively binds to CRF1 over CRF2 receptors (Kis = 0.66 and >100 nM, respectively) and induces cAMP production in CHO cells expressing CRF2 (EC50 = 0.14 nM). In vivo, urocortin II suppresses nighttime food intake by 35% in rats when administered intracerebroventricularly at a dose of 1 μg. Urocortin II (0.1 and 0.5 μg, i.c.v) stimulates fecal pellet output, increases distal colonic transit, and inhibits gastric emptying in mice.2References1. Reyes, T.M., Lewis, K., Perrin, M.H., et al. Urocortin II: A member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl. Acad. Sci. U.S.A. 98(5), 2843-2848 (2001).2. Martinez, V., Wang, L., Million, M., et al. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides 25(10), 1733-1744 (2004). Urocortin II is a neuropeptide hormone and member of the corticotropin-releasing factor (CRF) family which includes mammalian CRF , urocortin , urocortin III , frog sauvagine, and piscine urotensin I.1 Mouse urocortin II shares 34 and 42% sequence homology with rat CRF and urocortin . It is expressed in mouse paraventricular, supraoptic, and arcuate nuclei of the hypothalamus, the locus coeruleus, and in motor nuclei of the brainstem and spinal ventral horn. Urocortin II selectively binds to CRF1 over CRF2 receptors (Kis = 0.66 and >100 nM, respectively) and induces cAMP production in CHO cells expressing CRF2 (EC50 = 0.14 nM). In vivo, urocortin II suppresses nighttime food intake by 35% in rats when administered intracerebroventricularly at a dose of 1 μg. Urocortin II (0.1 and 0.5 μg, i.c.v) stimulates fecal pellet output, increases distal colonic transit, and inhibits gastric emptying in mice.2 References1. Reyes, T.M., Lewis, K., Perrin, M.H., et al. Urocortin II: A member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl. Acad. Sci. U.S.A. 98(5), 2843-2848 (2001).2. Martinez, V., Wang, L., Million, M., et al. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides 25(10), 1733-1744 (2004).
The phosphatidylinositol (PtdIns) phosphates represent a small percentage of total membrane phospholipids. However, they play a critical role in the generation and transmission of cellular signals. PtdIns-(3,4,5)-P3, also known as PIP3, is resistant to cleavage by PI-specific phospholipase C (PLC). Thus, it is likely to function in signal transduction as a modulator in its own right, rather than as a source of inositol tetraphosphates. PIP3 can serve as an anchor for the binding of signal transduction proteins bearing pleckstrin homology (PH) domains. Protein binding to PIP3 is important for cytoskeletal rearrangement and membrane trafficking. PtdIns-(3,4,5)-P3 (1,2-dihexanoyl) is a synthetic analog of natural PIP3 with C6:0 fatty acids at the sn-1 and sn-2 positions. The compound features the same inositol and diacylglycerol (DAG) stereochemistry as that of the natural compound. The short fatty acid chains of this analog give it different physical properties from naturally-occurring PIP3, including higher solubility in aqueous media.
The phosphatidylinositol phosphates represent a small percentage of total membrane phospholipids. However, they play a critical role in the generation and transmission of cellular signals. PtdIns-(3,4,5)-P3 can serve as an anchor for the binding of signal transduction proteins bearing pleckstrin homology (PH) domains. Centuarin α and the Akt-family of GTPase activating proteins are examples of PtdIns-(3,4,5)-P3-binding proteins. Protein-binding to PtdIns-(3,4,5)-P3 is important for cytoskeletal rearrangements and membrane trafficking. PtdIns-(3,4,5)-P3 is resistant to cleavage by PI-specific phospholipase C (PLC). Thus, it is likely to function in signal transduction as a modulator in its own right, rather than as a source of inositol tetraphosphates. For further reading on inositol phospholipids, see also references and .
Brain-derived acidic fibroblast growth factor (brain-derived aFGF) (1-11) is a peptide fragment of brain-derived aFGF. Brain-derived aFGF is an angiogenic vascular endothelial cell mitogen produced in bovine brain that has sequence homology to interleukin-1. aFGF (1-11) corresponds to amino acid residues 1-11 of the full length peptide.