首页 工具
登录
购物车
Tanespimycin

Tanespimycin

产品编号 T6290   CAS 75747-14-7
别名: 坦螺旋霉素, 17-AAG, CP 127374, NSC 330507, KOS 953

Tanespimycin (KOS 953) 是一种 Hsp90 抑制剂,可选择性抑制 BT474 肿瘤细胞 Hsp90,IC50为 5 nM。它消耗细胞内 STK38/NDR1,并降低 STK38 激酶活性,还能下调stk38基因表达。

TargetMol的所有产品和服务仅用于科学研究,不能被用于人体,我们也不向个人提供产品和服务。
Tanespimycin Chemical Structure
Tanespimycin, CAS 75747-14-7
规格 价格/CNY 货期 数量
5 mg ¥ 359 现货
10 mg ¥ 558 现货
25 mg ¥ 919 现货
50 mg ¥ 1,450 现货
1 mL * 10 mM (in DMSO) ¥ 514 现货
千万补贴 助力科研
BCA蛋白浓度测定试剂盒限时半价
Venetoclax限时半价
MG-132限时半价
产品目录号及名称: Tanespimycin (T6290)
点击图片重新获取验证码
选择批次  
纯度: 99.83%
纯度: 99.34%
纯度: 99.07%
更多批次查询请联系客服
天然产物信息
生物活性
化学信息
存储 & 溶解度
参考文献
产品描述 Tanespimycin (KOS 953) (17-AAG) is an inhibitor of Hsp90 that selectively inhibits BT474 tumor cell Hsp90 (IC50: 5 nM).
靶点活性 HSP90:5 nM (cell free)
体外活性 Hsp90 derived from tumour cells has a 100-fold higher binding affinity for 17-AAG than does Hsp90 from normal cells. In vitro reconstitution of chaperone complexes with Hsp90 resulted in increased binding affinity to 17-AAG, and increased ATPase activity [1]. 17-AAG caused the degradation of HER2, Akt, and both mutant and wild-type AR and the retinoblastoma-dependent G1 growth arrest of prostate cancer cells [2]. Combined 17-AAG and Trastuzumab treatment of ErbB2-overexpressing breast cancer cell lines leads to enhanced ubiquitinylation, downregulation from the cell surface and lysosomal degradation of ErbB2 [3].
体内活性 At non-toxic doses, 17-AAG caused a dose-dependent decline in AR, HER2, and Akt expression in prostate cancer xenografts. This decline was rapid, with a 97% loss of HER2 and an 80% loss of AR expression at 4 h [2]. In contrast, spleens from mice which had received 17-AAG (5 to 40 mg/kg) were dramatically smaller, with less infiltrating lymphoma cells in the spleen, and a lower metastatic spread into other organs, as compared to the vehicle-treated control. In addition, 17-AAG treated mice survived significantly longer compared to mice which had received vehicle alone [4].
激酶实验 Purified native Hsp90 protein or cell lysates in lysis buffer (20 mM HEPES, pH 7.3, 1 mM EDTA, 5 mM MgCl2, 100 mM KCl) were incubated with or without 17-AAG for 30 min at 4 °C, and then incubated with biotin-GM linked to streptavidin magnetic beads for 1 h at 4 °C. Tubes were placed on a magnetic rack, and the unbound supernatant removed. The magnetic beads were washed three times in lysis buffer and heated for 5 min at 95 °C in SDS–PAGE sample buffer. Samples were analyzed on SDS protein gels, and western blots done using indicated antibodies. Bands in the western blots were quantified, and the percentage inhibition of binding of Hsp90 to the biotin-GM was calculated. The IC50 reported is the concentration of 17-AAG needed to cause half-maximal inhibition of binding. For in vitro reconstitution, 5 μM of purified Hsp90 was combined with 1 μM each of Hsp70, Hsp40, p23, and Hop purified proteins [1].
细胞实验 Cells were seeded in 96-well plates at 2,000 cells per well in a final culture volume of 100 μl for 24 h before the addition of increasing concentrations of 17-AAG that was incubated for 5 days. Viable cell number was determined using the Celltiter 96 AQueous Nonradioactive Cell Proliferation Assay. The value of the background absorbance at 490 nm (A490) of wells not containing cells was subtracted. Percentage of viable cells ? (A490 of 17-AAG treated sample/A490 untreated cells) × 100. The IC50 was defined as the concentration that gave rise to 50% viable cell number [1].
动物实验 B10.BR mice were inoculated with 5×10^5 lymphoma cells through intraperitoneal injection. Seven days following tumor implantation, the mice were I.P. injected with 17-AAG or vehicle (10% DMSO + 40% Cremophor EL: Ethanol (3:1) (v/v) + 50 % PBS) every other day for three weeks. At the cessation of treatment, mice were monitored up to 80 days post tumor cell injection. To determine the effects of 17-AAG on lymphoma initiation in vivo, secondary B10.BR recipient mice were implanted by intraperitoneal injection of 1×10^5 lymphoma cells from the spleens of first-round mice that had been treated with 17-AAG or vehicle. These mice were followed up to 160 days post tumor cell injection to monitor differences in tumor initiation between the mice [4].
别名 坦螺旋霉素, 17-AAG, CP 127374, NSC 330507, KOS 953
分子量 585.69
分子式 C31H43N3O8
CAS No. 75747-14-7

存储

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度

DMSO: 58.6 mg/mL (100 mM)

溶液配制表

可选溶剂 浓度 体积 质量 1 mg 5 mg 10 mg 25 mg
DMSO 1 mM 1.7074 mL 8.5369 mL 17.0739 mL 42.6847 mL
5 mM 0.3415 mL 1.7074 mL 3.4148 mL 8.5369 mL
10 mM 0.1707 mL 0.8537 mL 1.7074 mL 4.2685 mL
20 mM 0.0854 mL 0.4268 mL 0.8537 mL 2.1342 mL
50 mM 0.0341 mL 0.1707 mL 0.3415 mL 0.8537 mL
100 mM 0.0171 mL 0.0854 mL 0.1707 mL 0.4268 mL

TargetMol Calculator计算器

摩尔浓度计算器
稀释计算器
配液计算器
分子量计算器
=
X
X
X
=
X
=
/
g/mol

输入分子式,点击计算,可计算出产品的分子量。

TargetMol Library Books参考文献

1. Kamal A, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 2003 Sep 25;425(6956):407-10. 2. Solit DB, et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts.Clin Cancer Res, 2002, 8(5), 986-993. 3. Raja SM, et al. A combination of Trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysosomal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells. Cancer Biol Ther. 2008 Oct;7(10):1630-40. 4. Newman B, et al. HSP90 Inhibitor 17-AAG Selectively Eradicates Lymphoma Stem Cells.Cancer Res. 2012 Sep 1;72(17):4551-61. Epub 2012 Jun 29. 5. Peng Y C, Wang S, Zhang Y, et al. Hsp90β inhibitors prevent GLT-1 degradation but have no beneficial efficacy on absence epilepsy[J]. Journal of Asian natural products research. 2018 Nov 17:1-11. 6. Zuo Y, Xu H, Chen Z, et al. 17‑AAG synergizes with Belinostat to exhibit a negative effect on the proliferation and invasion of MDA‑MB‑231 breast cancer cells[J]. Oncology Reports. 2020, 43(6): 1928-1944. 7. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis[J]. Proceedings of the National Academy of Sciences. 2019 Feb 19;116(8):2996-3005.

TargetMol Library Books文献引用

1. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proceedings of the National Academy of Sciences. 2019 Feb 19;116(8):2996-3005 2. Chen H, He A, Li H, et al. TSSK4 upregulation in alveolar epithelial type-II cells facilitates pulmonary fibrosis through HSP90-AKT signaling restriction and AT-II apoptosis. Cell Death & Disease. 2021, 12(10): 1-1 3. Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022: 154133 4. Zuo Y, Xu H, Chen Z, et al. 17‑AAG synergizes with Belinostat to exhibit a negative effect on the proliferation and invasion of MDA‑MB‑231 breast cancer cells. Oncology Reports. 2020, 43(6): 1928-1944. 5. Peng Y C, Wang S, Zhang Y, et al. Hsp90β inhibitors prevent GLT-1 degradation but have no beneficial efficacy on absence epilepsy. Journal of Asian Natural Products Research. 2018 Nov 17:1-11 6. Qiu C, Shen X, Lu H, et al.Combination therapy with HSP90 inhibitors and piperlongumine promotes ROS-mediated ER stress in colon cancer cells.Cell Death Discovery.2023, 9(1): 375. 7. Wang C, Wang T, Hu R, et al.9-Butyl-Harmol Exerts Antiviral Activity against Newcastle Disease Virus through Targeting GSK-3β and HSP90β.Journal of Virology.2023: e01984-22. 8. Zhang M, Tan H, Gong Y, et al.TRIM26 restricts Epstein–Barr virus infection in nasopharyngeal epithelial cells through K48‐linked ubiquitination of HSP‐90β.The FASEB Journal.2024, 38(1): e23345. 9. Huang Z, Li S, Zhong L, et al.Effect of resveratrol on herpesvirus encephalitis: evidences for its mechanisms of action.Phytomedicine.2024: 155476.
(R)-CR8 trihydrochloride Calcium dobesilate BTZO-1 Diclofenac Potassium Paclitaxel SAR125844 Concanavalin A CM-272

相关化合物库

该产品包含在如下化合物库中:
微生物天然产物库 抑制剂库 抗癌药物库 激酶抑制剂库 药物功能重定位化合物库 抗癌临床化合物库 高选择性抑制剂库 抗癌活性化合物库 抗衰老化合物库 儿童药物库

TargetMol Calculator剂量换算

对于不同动物的给药剂量换算,您也可以参考 更多...

TargetMol Calculator 体内实验配液计算器

请在以下方框中输入您的动物实验信息后点击计算,可以得到母液配置方法和体内配方的制备方法: 比如您的给药剂量是10 mg/kg,每只动物体重20 g,给药体积100 μL,一共给药动物10 只,您使用的配方为5% DMSO+30% PEG300+5% Tween 80+60% ddH2O。那么您的工作液浓度为2 mg/mL。

母液配置方法:2 mg 药物溶于 50 μL DMSO (母液浓度为 40 mg/mL), 如您需要配置的浓度超过该产品的溶解度,请先与我们联系。

体内配方的制备方法:取 50 μL DMSO 主液,加入 300 μL PEG300, 混匀澄清,再加 50 μL Tween 80,混匀澄清,再加 600 μL ddH2O, 混匀澄清。

第一步:请输入动物实验的基本信息
剂量
mg/kg
每只动物体重
g
给药体积
μL
动物数量
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
% DMSO
%
% Tween 80
% ddH2O
计算 重置

技术支持

您可能有的问题的答案可以在抑制剂处理说明中找到,包括如何准备库存溶液,如何存储产品,以及基于细胞的分析和动物实验需要特别注意的问题。

Keywords

Tanespimycin 75747-14-7 Apoptosis Autophagy Cytoskeletal Signaling Metabolism Microbiology/Virology Mitophagy HSP Antibacterial Antibiotic tumor stk38 坦螺旋霉素 Inhibitor KOS953 cancer prostate Heat shock proteins NSC-330507 Mitochondrial Autophagy 17-AAG CP127374 CP 127374 NSC 330507 inhibit CP-127374 KOS 953 HER2 KOS-953 A549 NSC330507 Bacterial inhibitor

 

TargetMol Loading
陶术
生物
TargetMol®中国区唯一合作伙伴
点击进入陶术生物官网陶术生物
联系我们
400-820-0310

上海市静安区江场三路238号8楼