BIM-46050 is a potent and specific inhibitor of human farnesyltransferase. BIM-46050 is free acidic form of BIM-46068. The IC50 values for in vitro inhibition of human brain FTase indicate that BIM-46050 and the ester form BIM-46068 are potent inhibitors of farnesyltransferase. Their potencies are in the nanomolar range and compare favorably with the compounds B581, FTI-277 and L745,631. B581 is an analog of the tetrapeptide Cys-Val-Phe-Met obtained by replacement of the amino-terminal amide bonds inhibiting processing of farnesylated proteins specifically. FTI-277 is a methyl ester of FTI-276, reported as a preferential inhibitor of FTase over GGTase I (100-fold). L745,631 is a 2-substituted piperazine reported to be a highly selective inhibitor of FTase over GGTase (2,000-fold). The selectivity of BIM-46050 and BIM-46068 for FTase over GGTase is very similar for both compounds (3,000-fold).
H-Arg-Gly-Asp-Cys-OH is a tetrapeptide that contains the arginine-glycine-aspartate (RGD) motif, a sequence that acts as a recognition site for various adhesion proteins.1It inhibits the binding of fibrinogen to endothelial cells and ADP-stimulated platelets with IC50values of 320 and 35 μM, respectively.2Implantation of titanium rods coated with H-Arg-Gly-Asp-Cys-OH increases bone formation in rat femurs.3H-Arg-Gly-Asp-Cys-OH has been conjugated to polyethylenimine to improve gene transfection efficiency.4 1.Park, H.S., Kim, C., and Kang, Y.K.Preferred conformations of RGDX tetrapeptides to inhibit the binding of fibrinogen to plateletsBiopolymers63(5)298-313(2002) 2.Tranqui, L., Andrieux, A., Hudry-Clergeon, G., et al.Differential structural requirements for fibrinogen binding to platelets and to endothelial cellsJ. Cell Biol.108(6)2519-2527(1989) 3.Ferris, D.M., Moodie, G.D., Dimond, P.M., et al.RGD-coated titanium implants stimulate increased bone formation in vivoBiomaterials20(23-24)2323-2331(1999) 4.Kunath, K., Merdan, T., Hegener, O., et al.Integrin targeting using RGD-PEI conjugates for in vitro gene transferJ. Gene Med.5(7)588-599(2003)
Epitalon is a synthetic tetrapeptide with anti-aging properties.1,2,3,4 Dietary administration of epitalon (0.00001% w w) reduces levels of lipid peroxidation products in aged D. melanogaster tissue homogenates.1 Epitalon (1 μg animal) delays age-related estrous shutdown and decreases the frequency of bone marrow cell chromosomal aberrations in female mice.2 It decreases spontaneous mammary gland and ovarian tumor development and metastasis in aged female mice.3 Epitalon also stimulates melatonin synthesis and normalizes the circadian rhythm of cortisol secretion in senescent female M. mulatta monkeys.4References1. Khavinson, V.K., and Myl'nikov, S.V. Effect of epithalone on the age-specific changes in the time course of lipid peroxidation in Drosophila melanogaster. Bull. Exp. Biol. Med. 130(11), 1116-1119 (2000).2. Anisimov, V.N., Khavinson, V.K., Popovich, I.G., et al. Effect of Epitalon on biomarkers of aging, life span and spontaneous tumor incidence in female Swiss-derived SHR mice. Biogerontology 4(4), 193-202 (2003).3. Kossoy, G., Anisimov, V.N., Ben-Hur, H., et al. Effect of the synthetic pineal peptide epitalon on spontaneous carcinogenesis in female C3H He mice. In Vivo 20(2), 253-257 (2006).4. Khavinson, V., Goncharova, N., and Lapin, B. Synthetic tetrapeptide epitalon restores disturbed neuroendocrine regulation in senescent monkeys. Neuro. Endocrinol. Lett. 22(4), 251-254 (2001). Epitalon is a synthetic tetrapeptide with anti-aging properties.1,2,3,4 Dietary administration of epitalon (0.00001% w w) reduces levels of lipid peroxidation products in aged D. melanogaster tissue homogenates.1 Epitalon (1 μg animal) delays age-related estrous shutdown and decreases the frequency of bone marrow cell chromosomal aberrations in female mice.2 It decreases spontaneous mammary gland and ovarian tumor development and metastasis in aged female mice.3 Epitalon also stimulates melatonin synthesis and normalizes the circadian rhythm of cortisol secretion in senescent female M. mulatta monkeys.4 References1. Khavinson, V.K., and Myl'nikov, S.V. Effect of epithalone on the age-specific changes in the time course of lipid peroxidation in Drosophila melanogaster. Bull. Exp. Biol. Med. 130(11), 1116-1119 (2000).2. Anisimov, V.N., Khavinson, V.K., Popovich, I.G., et al. Effect of Epitalon on biomarkers of aging, life span and spontaneous tumor incidence in female Swiss-derived SHR mice. Biogerontology 4(4), 193-202 (2003).3. Kossoy, G., Anisimov, V.N., Ben-Hur, H., et al. Effect of the synthetic pineal peptide epitalon on spontaneous carcinogenesis in female C3H He mice. In Vivo 20(2), 253-257 (2006).4. Khavinson, V., Goncharova, N., and Lapin, B. Synthetic tetrapeptide epitalon restores disturbed neuroendocrine regulation in senescent monkeys. Neuro. Endocrinol. Lett. 22(4), 251-254 (2001).