BMS-986118 is a full agonist of GPR40, is a G-protein-coupled receptor expressed primarily in pancreatic islets and intestinal L-cells that has been a target of significant recent therapeutic interest for type II diabetes. Activation of GPR40 by partial a
Neuropeptide Y (NPY) (3-36) is a C-terminal fragment of NPY, a neuropeptide involved in controlling appetite, blood pressure, cardiac contractility, and intestinal secretion. NPY (3-36) is an endogenous peptide produced by cleavage of NPY by dipeptidyl peptidase 4 (DPP-4). It binds selectively to the NPY receptor Y2 (Ki = 0.41 nM in CHP 234 cells) over the Y1 receptor, where it does not bind at concentrations up to 1 μM. NPY (3-36) (0.1 nM) increases migration of human umbilical vein endothelial cells (HUVECs) by 80% after 12 hours in an in vitro wound closure assay. NPY (3-36) corresponds to residues 3-36 of the human and rat protein sequence.
Osteocalcin (1-49) is a non-collagenous peptide that is secreted by osteoblasts and odontoblasts and comprises 1-2% of the total protein in bone. Secretion of osteocalcin (1-49) is stimulated by 1,25-dihydroxy vitamin D and plasma levels increase in diseases that induce dysregulated bone turnover such as osteoporosis, Paget's disease, and primary hyperparathyroidism. Osteocalcin (1-49) is positively correlated with insulin sensitivity and negatively correlated with high blood glucose levels in women. In vitro, osteocalcin induces chemotaxis of MDA-MB-231 breast cancer cells, human peripheral blood monocytes, and rat osteosarcoma cells with osteoblast-like characteristics. It is also expressed by vascular smooth muscle cells (VSMCs) displaying an osteoblast-like phenotype and has been positively associated with calcification of aortic tissue and heart valves in humans.
Kisspeptin-54 is a peptide ligand of the orphan G protein-coupled receptor GPR54 (Kis = 1.81 and 1.45 nM for rat and human receptors, respectively).1 It is a 54 amino acid peptide encoded by the metastasis suppressor gene KISS-1. Kisspeptin-54 induces calcium mobilization in CHO-K1 cells expressing rat and human receptors (EC50s = 1.39 and 5.47 nM, respectively). It also induces arachidonic acid release in CHO cells expressing rat and human GPR54 in a concentration-dependent manner. Kisspeptin-54 (10-1,000 nM) inhibits insulin secretion from isolated mouse pancreatic β-cells in the presence of 2.8 mM, but not 11.1 mM, glucose.2 Kisspeptin-54 (1-5 nmol, i.c.v.) increases serum levels of luteinizing hormone (LH) and follicular stimulating hormone (FSH) in mice, an effect which is reversed by the gonadotropin releasing hormone (GNRH) antagonist acycline.3References1. Kotani, M., Detheux, M., Vandenbogaerde, A.L., et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem. 276(37), 34631-34636 (2001).2. Vikman, J., and Ahrén, B. Inhibitory effect of kisspeptins on insulin secretion from isolated mouse islets. Diabetes Obes. Metab. 11(Suppl 4), 197-201 (2009).3. Gottsch, M.L., Cunningham, M.J., Smith, J.T., et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145(9), 4073-4077 (2004). Kisspeptin-54 is a peptide ligand of the orphan G protein-coupled receptor GPR54 (Kis = 1.81 and 1.45 nM for rat and human receptors, respectively).1 It is a 54 amino acid peptide encoded by the metastasis suppressor gene KISS-1. Kisspeptin-54 induces calcium mobilization in CHO-K1 cells expressing rat and human receptors (EC50s = 1.39 and 5.47 nM, respectively). It also induces arachidonic acid release in CHO cells expressing rat and human GPR54 in a concentration-dependent manner. Kisspeptin-54 (10-1,000 nM) inhibits insulin secretion from isolated mouse pancreatic β-cells in the presence of 2.8 mM, but not 11.1 mM, glucose.2 Kisspeptin-54 (1-5 nmol, i.c.v.) increases serum levels of luteinizing hormone (LH) and follicular stimulating hormone (FSH) in mice, an effect which is reversed by the gonadotropin releasing hormone (GNRH) antagonist acycline.3 References1. Kotani, M., Detheux, M., Vandenbogaerde, A.L., et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem. 276(37), 34631-34636 (2001).2. Vikman, J., and Ahrén, B. Inhibitory effect of kisspeptins on insulin secretion from isolated mouse islets. Diabetes Obes. Metab. 11(Suppl 4), 197-201 (2009).3. Gottsch, M.L., Cunningham, M.J., Smith, J.T., et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145(9), 4073-4077 (2004).
3-Iodothyronamine is derived from the deiodination and decarboxylation of endogenous thyroxine. It activates the G protein-coupled receptor known as trace amine-associated receptor 1 at nanomolar concentrations whereupon it rapidly influences thyroid hormone actions including body temperature, heart rate, and cardiac output. It has also been reported to function in controlling lipid and glucose utilization, hormonal secretion, and neuronal function, and has been considered for use in chemically-induced hibernation for medical purposes.
Givinostat (ITF-2357) is a HDAC inhibitor with an IC50 of 198 and 157 nM for HDAC1 and HDAC3, respectively. Givinostat (ITF2357) suppresses total LPS-induced IL-1β production robustly compared with the reduction by ITF3056. At 25, 50, and 100 nM, Givinostat reduced IL-1β secretion more than 70%. Givinostat (ITF-2357) suppresses the production of IL-6 in PBMCs stimulated with TLR agonists as well as the combination of IL-12 plus IL-18. IL-6 secretion decreases to 50% at 50 nM Givinostat, but at 100 and 200 nM, there is no reduction[1]. As shown by the CCK-8 assay, Givinostat (ITF-2357) inhibits JS-1 cell proliferation in a concentration-dependent manner. Treatment with Givinostat ≥500 nM is associated with significant inhibition of JS-1 cell proliferation (P<0.01). Also, the cell inhibition rate significantly differs between the group cotreated with Givinostat ≥250 nM plus LPS and the group without LPS treatment (same Givinostat concentration) (P<0.05)[2]. Givinostat (ITF2357) at 10 mg kg is used as a positive control and, as expected, reduced serum TNFα by 60%. Strikingly, pretreatment of ITF3056 starting at 0.1 mg kg significantly reduces the circulating TNFα by nearly 90%. To achieve a significant increase in serum IL-1β production, a higher dose of LPS is injected (10 mg kg), and blood is collected after 4 h. Similarly, when pretreated with lower doses of Givinostat (ITF-2357) (1 or 5 mg kg), there is a 22% reduction for 1 mg kg and 40% for 5 mg kg[1]. [1]. Li S, et al. Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo. J Biol Chem. 2015 Jan 23;290(4):2368-78. [2]. Wang YG, et al. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation. World J Gastroenterol. 2015 Jul 21;21(27):8326-39. [3]. Leoni F, et al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med. 2005 Jan-Dec;11(1-12):1-15.
NG 25 is a type II kinase inhibitor that inhibits MAP4K2 and TAK1 (IC50s = 21.7 and 149 nM, respectively).1It also inhibits the Src family kinases Src and LYN (IC50s = 113 and 12.9 nM, respectively) and Abl family kinases (IC50s = 75.2 nM), as well as CSK, FER, and p38α (IC50s = 56.4, 82.3, and 102 nM, respectively). NG 25 (100 nM) prevents TNF-α-induced IKKα/β phosphorylation and IκB-α degradation in L929 cells. It inhibits secretion of IFN-α and IFN-β induced by CpG type B and CL097, respectively, in Gen2.2 cells in a concentration-dependent manner.2NG 25 decreases cell viability of HCT116KRASWT, and to a greater degree of HCT116KRASG13D, colorectal cancer cells in a concentration-dependent manner.3It also reduces tumor growth and increases the number of TUNEL-positive tumor cells in a CT26KRASG12Dmouse orthotopic model of colorectal cancer. 1.Tan, L., Nomanbhoy, T., Gurbani, D., et al.Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2)J. Med. Chem.58(1)183-196(2015) 2.Pauls, E., Shpiro, N., Peggie, M., et al.Essential role for IKKβ in production of type 1 interferons by plasmacytoid dendritic cellsJ. Biol. Chem. 287(23)19216-19228(2012) 3.Ma, Q., Gu, L., Liao, S., et al.NG25, a novel inhibitor of TAK1, suppresses KRAS-mutant colorectal cancer growth in vitro and in vivoApoptosis24(1-2)83-94(2019)
cis-9,10-Methyleneoctadecanoic acid is a cyclopropane fatty acid that has been found in bacteria and the digestive gland of P. globosa. It is a component of S. aureus cell membranes and levels decrease upon treatment with carvacrol. cis-9,10-Methyleneoctadecanoic acid is secreted by H. pylori and enhances histamine- and dibutyryl cAMP-stimulated acid secretion in isolated guinea pig parietal cells. It also activates protein kinase C (PKC) in a calcium-dependent manner.