NHC-triphosphate is a weak alternative substrate for the viral polymerase and changes the mobility of the product in polyacrylamide electrophoresis gels.
NHC-diphosphate is an active phosphorylated intracellular metabolite of β-d-N4-Hydroxycytidine (NHC) as a diphosphate form[1]. NHC is a pyrimidine ribonucleoside and behaves as a potent anti-virus agent. NHC effectively inhibits the replication of venezuelan equine encephalitis virus (VEEV), Chikungunya virus (CHIKV) and hepatitis C virus (HCV)[1]. Huh-7 cells are incubated with (10-50 μM; 4 h) NHC or a McGuigan phosphoramidate prodrug of NHC.Intracellular levels of the parental compounds and phosphorylated metabolites are measured using LC-MS MS. Small amounts of NHC-monophosphate (MP) and NHC-diphosphate can be observed, while NHC-triphosphate remains the most abundant metabolite.[1].
NHC-triphosphate triammonium is an active phosphorylated intracellular metabolite of β-d-N4-Hydroxycytidine (NHC) as a triphosphate form[1]. NHC-triphosphate triammonium is a weak alternative substrate for the viral polymerase and can be incorporated into HCV replicon RNA[1][2]. In an intracellular metabolism assay, HCV replicon cells are treated with 10 μM 3H-labeled NHC, and intracellular nucleotide levels are determined after 1, 2 and 8 hours incubations. NHC is rapidly convered into the mono-, di-, and triphosphate forms, and NHC-TP reaches up to 71.12 pM after 8 hours[1].NHC-triphosphate triammonium (NHC-TP) (5-40 μM) absence leads to full-length polymerization products, it can be a weak alternative substrate. In addition, incorporation of NHC-TP instead of CTP increases the molecular weight of the polymerization product by 16 (one extra oxygen) for each event and an obvious electrophoretic shift is observed in cell-free HCV NS5B polymerization reactions[1].Huh-7 cells are incubated with (10-50 μM; 4 h) NHC or a McGuigan phosphoramidate prodrug of NHC. Intracellular levels of the parental compounds and phosphorylated metabolites are measured using LC-MS MS. Small amounts of NHC-monophosphate (MP) and NHC-diphosphate (DP) can be observed, while NHC-triphosphate triammonium remains the most abundant metabolite[2].NHC-triphosphate triammonium (NHC-TP) metabolite may directly target the viral polymerase and behave as a nonobligate chain terminator. It plays a prominent role in inhibiting early negative-strand RNA synthesis, either through chain termination or mutagenesis, which may in turn interfere with correct replicase complex formation. [1]. Stuyver LJ,et al. Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture.Antimicrob Agents Chemother. 2003 Jan;47(1):244-54. [2]. Maryam Ehteshami, et al. Characterization of β-d- N4-Hydroxycytidine as a Novel Inhibitor of Chikungunya Virus.
DBCO-NHCO-PEG4-amine is a cleavable ADC linker used to conjugate MMAE and antibody (e.g., DBCO-VCpAB MMAE and DBCO-TRX MMAE with EC50s of 280 nM and 22 nM in SKBR3 cells, respectively) [1].
DBCO-NHCO-PEG12-amine is a PEG-based linker for PROTACs which joins two essential ligands, crucial for forming PROTAC molecules. This linker enables selective protein degradation by leveraging the ubiquitin-proteasome system within cells.
DBCO-NHCO-PEG12-biotin is a PEG-based linker for PROTACs which joins two essential ligands, crucial for forming PROTAC molecules. This linker enables selective protein degradation by leveraging the ubiquitin-proteasome system within cells.
DBCO-NHCO-PEG13-acid is a PEG-based linker for PROTACs which joins two essential ligands, crucial for forming PROTAC molecules. This linker enables selective protein degradation by leveraging the ubiquitin-proteasome system within cells.
DBCO-NHCO-PEG2-amine is a PEG-based linker for PROTACs which joins two essential ligands, crucial for forming PROTAC molecules. This linker enables selective protein degradation by leveraging the ubiquitin-proteasome system within cells.
DBCO-NHCO-PEG2-Biotin is a PEG-based linker for PROTACs which joins two essential ligands, crucial for forming PROTAC molecules. This linker enables selective protein degradation by leveraging the ubiquitin-proteasome system within cells.
DBCO-NHCO-PEG2-CH2COOH is a PEG-based linker for PROTACs which joins two essential ligands, crucial for forming PROTAC molecules. This linker enables selective protein degradation by leveraging the ubiquitin-proteasome system within cells.
DBCO-NHCO-PEG3-acid is a PEG-based linker for PROTACs which joins two essential ligands, crucial for forming PROTAC molecules. This linker enables selective protein degradation by leveraging the ubiquitin-proteasome system within cells.
DBCO-NHCO-PEG3-Fmoc is a PEG-based linker for PROTACs which joins two essential ligands, crucial for forming PROTAC molecules. This linker enables selective protein degradation by leveraging the ubiquitin-proteasome system within cells.
DBCO-NHCO-PEG6-amine is a PEG-based linker for PROTACs which joins two essential ligands, crucial for forming PROTAC molecules. This linker enables selective protein degradation by leveraging the ubiquitin-proteasome system within cells.