Aldose reductase (AKR1B1) belongs to the aldo keto reductase superfamily. AKR1B1 is a NADPH-dependent aldo-keto reductase best known as the rate-limiting enzyme of the polyol pathway. Expression of AKR1B1 was the highest in lens and retina. It is the first enzyme in the polyol pathway through which glucose is converted to sorbitol which is important for the function of various organs in the body, and has been implicated in the etiology of diabetic complications. AKR1B1 is quite abundant in the collecting tubule cells and thought to provide protection against hypertonic environment. Some human tissues contain AKR1B1 as well as AKR1B10, a closely related member of the aldo-keto reductase superfamily.
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor.
Amphiregulin (AREG) is a member of the epidermal growth factor (EGF) family and is expressed in a plethora of cancers. Tumour growth and metastasis were decreased by AREG silencing in an orthotopic model of pancreatic cancer. AREG may play a critical role in cell migration, invasion, and EMT by activating the EGFR/ERK/NF‑κB signalling pathway in pancreatic cancer cells.
Aldehyde reductase (AKR1A1) is a member of the aldo-keto reductase superfamily, which consists of more than 40 known enzymes and proteins that includes variety of monomeric NADPH-dependent oxidoreductases, such as aldehyde reductase. Aldehyde reductase has wide substrate specificities for carbonyl compounds. These enzymes are implicated in the development of diabetic complications by catalyzing the reduction of glucose to sorbitol. Aldehyde reductase possess a structure with a beta-alpha-beta fold which contains a novel NADP-binding motif. The binding site is located in a large, deep, elliptical pocket in the C-terminal end of the beta sheet, the substrate being bound in an extended conformation. This binding is more similar to FAD- than to NAD(P)-binding oxidoreductases. AKR1A1 is involved in the reduction of biogenic and xenobiotic aldehydes and is present in virtually every tissue.