Diacylglycerols (DAG) are generated through the hydrolysis of membrane phospholipids and function as lipid second messengers by activating protein kinase C (PKC) and modulating cell growth and apoptosis. Additionally, they act as precursors for DAG kinases in the synthesis of phosphatidic acid, a crucial lipid messenger. The compound 1-NBD-decanoyl-2-decanoyl-sn-glycerol incorporates a nitrobenzoxadiazole (NBD) fluorophore at the ω-end of its terminal decanoyl chain, using the structure of 1,2-didecanoyl-sn-glycerol as a model for diacylglycerol. This molecule is expected to exhibit excitation and emission peaks at roughly 470/541 nm, paralleling those of various NBD-labeled phospholipids. Fluorescently labeled lipids, such as this, are instrumental in exploring their interactions with proteins, their uptake by cells and liposomes, and in developing assays for lipid metabolism research.
The phosphatidylinositol (PtdIns) phosphates represent a small percentage of total membrane phospholipids. However, they play a critical role in the generation and transmission of cellular signals. PtdIns-(1,2-dioctanoyl) is a synthetic analog of natural phosphatidylinositol (PtdIns) containing C8:0 fatty acids at the sn-1 and sn-2 positions. The compound features the same inositol and diacyl glycerol (DAG) stereochemistry as that of the natural compound. The short fatty acid chains of this analog, compared to naturally-occurring PtdIns, gives it different physical properties including high solubility in aqueous media. PtdIns are phosphorylated to mono- (PtdIns-P; PIP), di- (PtdIns-P2; PIP2), and triphosphates (PtdIns-P3; PIP3). Hydrolysis of PtdIns-(4,5)-P2 by phosphoinositide (PI)-specific phospholipase C generates inositol triphosphate (IP3) and DAG which are key second messengers in an intricate biochemical signal transduction cascade.
1,2-Dilinoleoyl-sn-glycerol is a diacylglycerol (DAG) with linoleic acid (18:2) side chains attached at both the sn-1 and sn-2 positions. It has been found as a component of phosphatidic acid in rat liver mitochondria and in spinach chloroplast membranes. 1,2-Dilinoleoyl-sn-glycerol is upregulated in some pregnant women and has been used as a biomarker to predict later preeclampsia in early pregnancy.
The phosphatidylinositol (PtdIns) phosphates represent a small percentage of total membrane phospholipids. However, they play a critical role in the generation and transmission of cellular signals. PtdIns-(3)-P1 (1,2-dioctanoyl) is a synthetic analog of natural PtdIns featuring C8:0 fatty acids at the sn-1 and sn-2 positions. The compound features the same inositol and DAG stereochemistry as the natural compound. PtdIns-(3)-P1 can be phosphorylated to di- (PtdIns-P2; PIP2) and triphosphates (PtdIns-P3; PIP3) by phosphatidyl inositol (PI)-specific kinases.
The phosphatidylinositol (PtdIns) phosphates represent a small percentage of total membrane phospholipids. However, they play a critical role in the generation and transmission of cellular signals. PtdIns-(3,4,5)-P3, also known as PIP3, is resistant to cleavage by PI-specific phospholipase C (PLC). Thus, it is likely to function in signal transduction as a modulator in its own right, rather than as a source of inositol tetraphosphates. PIP3 can serve as an anchor for the binding of signal transduction proteins bearing pleckstrin homology (PH) domains. Protein binding to PIP3 is important for cytoskeletal rearrangement and membrane trafficking. PtdIns-(3,4,5)-P3 (1,2-dihexanoyl) is a synthetic analog of natural PIP3 with C6:0 fatty acids at the sn-1 and sn-2 positions. The compound features the same inositol and diacylglycerol (DAG) stereochemistry as that of the natural compound. The short fatty acid chains of this analog give it different physical properties from naturally-occurring PIP3, including higher solubility in aqueous media.
Phosphatidylinositol-(4,5)-P2(1,2-dipalmitoyl), a synthetic analog of natural phosphatidylinositol (PtdIns) with C16:0 fatty acids at the sn-1 and sn-2 positions, maintains the inositol and diacylglycerol (DAG) stereochemistry of its natural counterpart. Although phosphatidylinositol phosphates constitute a minor fraction of total membrane phospholipids, they are pivotal in initiating and propagating cellular signals. This compound mirrors the activity of the natural phosphatidylinositol produced by PtdIns-4-phosphate 5-kinase's action on PtdIns-(4)-P1. Its hydrolysis by phosphoinositide (PI)-specific phospholipase C yields inositol triphosphate (IP3) and DAG, crucial secondary messengers in a complex signal transduction pathway.
In humans, two forms of diacylglycerol lipase, DAGLα and DAGLβ, generate the endocannabinoid 2-arachidonoyl glycerol by attacking DAG at the sn-1 position. O-7460 is a selective inhibitor of 2-AG biosynthesis via DAGLα (IC50 = 690 nM). It demonstrates much weaker inhibition towards human monoacylglycerol lipase and rat brain fatty acid amide hydrolase (IC50s > 10 μM) and does not bind to CB1 or CB2 cannabinoid receptors (Kis > 10 μM). At 0-12 mg kg, i.p. in mice, O-7460 was reported to dose-dependently inhibit high-fat diet intake and reduce body weight.
The phosphatidylinositol (PtdIns) phosphates represent a small percentage of total membrane phospholipids. However, they play a critical role in the generation and transmission of cellular signals. PtdIns-(4)-P1 (1,2-dioctanoyl) is a synthetic analog of natural phosphatidylinositol (PtdIns) featuring C8:0 fatty acids at the sn-1 and sn-2 positions. The compound contains the same inositol and diacylglycerol (DAG) stereochemistry as the natural compound. PtdIns-(4)-P1 can be phosphorylated to di- (PtdIns-P2; PIP2) and triphosphates (PtdIns-P3; PIP3). Hydrolysis of PtdIns-(4,5)-P2 by phosphoinositide (PI)-specific phospholipase C generates inositol triphosphate (IP3) and DAG which are key second messengers in an intricate biochemical signal transduction cascade.