PROTAC IDO1 Degrader-1 is the first potent IDO1 (indoleamine 2,3-dioxygenase 1) degrader that hijacks IDO1 to CRBN E3 ligase to introduce IDO1 into UPS and eventually achieve ubiquitination and degradation (DC50=2.84 μM). PROTAC IDO1 Degrader-1 moderately improves the tumor-killing activity of H ER2 CAR-T cells[1]. PROTAC IDO1 Degrader-1 (compound 2c) (10 μM; 24 hours) notably decreases IDO1 level induced by IFN-γ[1].PROTAC IDO1 Degrader-1 and IFN-γ (5 ng mL) are incubated with HeLa cells for 24 h, and a significant dose-dependent degradation is observed. PROTAC IDO1 Degrader-1 combined with chimeric antigen receptor-modified T (CAR-T) cells can improve the tumor-killing activity of HER-2 CAR-T cells[1].PROTAC IDO1 Degrader-1 induces significant and persistent degradation of IDO1 with maximum degradation (dmax) of 93% in HeLa cells[1]. [1]. Hu M, et al. Discovery of the first potent proteolysis targeting chimera (PROTAC) degrader of indoleamine 2,3-dioxygenase 1. Acta Pharm Sin B. 2020;10(10):1943-1953.
1-Stearoyl-3-oleoyl-rac-glycerol is a diacylglycerol that contains stearic acid at the sn-1 position and oleic acid at the sn-3 position. Intermittent fasting decreases skeletal muscle and hepatic levels of 1-stearoyl-3-oleoyl-rac-glycerol in New Zealand obese (NZO) mice.1 The concentration of 1-stearoyl-3-oleoyl-rac-glycerol decreases from 4.59 to 1.88% during the dry-curing process of Iberian ham.2References1. Baumeier, C., Kaiser, D., Heeren, J., et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim. Biophys. Acta 1851(5), 566-576 (2015).2. Narváez-Rivas, M., Vicario, I.M., Constante, E.G., et al. Changes in the concentrations of free fatty acid, monoacylglycerol, and diacylglycerol in the subcutaneous fat of Iberian ham during the dry-curing process. J. Agric. Food Chem. 55(26), 10953-10961 (2007). 1-Stearoyl-3-oleoyl-rac-glycerol is a diacylglycerol that contains stearic acid at the sn-1 position and oleic acid at the sn-3 position. Intermittent fasting decreases skeletal muscle and hepatic levels of 1-stearoyl-3-oleoyl-rac-glycerol in New Zealand obese (NZO) mice.1 The concentration of 1-stearoyl-3-oleoyl-rac-glycerol decreases from 4.59 to 1.88% during the dry-curing process of Iberian ham.2 References1. Baumeier, C., Kaiser, D., Heeren, J., et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim. Biophys. Acta 1851(5), 566-576 (2015).2. Narváez-Rivas, M., Vicario, I.M., Constante, E.G., et al. Changes in the concentrations of free fatty acid, monoacylglycerol, and diacylglycerol in the subcutaneous fat of Iberian ham during the dry-curing process. J. Agric. Food Chem. 55(26), 10953-10961 (2007).
9(S),12(S),13(S)-TriHOME is a linoleic acid-derived oxylipin that has diverse biological activities.1,2,3,4It has been found in various plants and is produced in human eosinophils in a 15-lipoxygenase-dependent, soluble epoxide hydrolase-independent manner.1,59(S),12(S)13(S)-TriHOME inhibits antigen-induced β-hexosaminidase release from RBL-2H3 mast cells (IC50= 28.7 μg ml).2It inhibits LPS-induced nitric oxide (NO) production in BV-2 microglia (IC50= 40.95 μM).3In vivo, 9(S),12(S),13(S)-TriHOME (1 g animal) enhances the antiviral IgA and IgG antibody responses induced by a nasal influenza hemagglutinin (HA) vaccine by 5.2- and 2-fold, respectively, in mice.4 1.Hamberg, M., and Hamberg, G.Peroxygenase-catalyzed fatty acid epoxidation in cereal seeds: Sequential oxidation of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acidPlant Physiol.110(3)807-815(1996) 2.Hong, S.S., and Oh, J.S.Inhibitors of antigen-induced degranulation of RBL-2H3 cells isolated from wheat branJ. Korean Soc. Appl. Biol. Chem.5569-74(2012) 3.Kim, C.S., Kwon, O.W., Kim, S.Y., et al.Five new oxylipins from Chaenomeles sinensisLipids49(11)1151-1159(2014) 4.Shirahata, T., Sunazuka, T., Yoshida, K., et al.Total synthesis, elucidation of absolute stereochemistry, and adjuvant activity of trihydroxy fatty acidsTetrahedron62(40)9483-9496(2006) 5.Fuchs, D., Tang, X., Johnsson, A.-K., et al.Eosinophils synthesize trihydroxyoctadecenoic acids (TriHOMEs) via a 15-lipoxygenase dependent processBiochim. Biophys. Acta Mol. Cell Biol. Lipids1865(4)158611(2020)
AAA is an antagonist of G protein-coupled receptor 75 (GPR75).1It increases basal GPR75 protein levels and inhibits 20-HETE-induced reductions in GPR75 protein levels in PC3 cells. AAA (5 and 10 μM) also reduces 20-HETE-induced phosphorylation of EGFR, NF-κB, and Akt in, and cell migration of, PC3 cells.In vivo, AAA (10 mg/kg per day) reduces systolic blood pressure, albuminuria, renal angiotensin II levels, and cardiac hypertrophy in a Cyp1a1-Ren-2 transgenic rat model of malignant hypertension when administered prior to induction or after establishment of hypertension.2 1.Cárdenas, S., Colombero, C., Panelo, L., et al.GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cellsBiochim. Biophys. Acta Mol. Cell Biol. Lipids1865(2)158573(2020) 2.Sedláková, L., Kikerlová, S., Husková, Z., et al.20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic ratsBiosci. Rep.38(5)BSR20171496(2018)
Palmitic acid-13C is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid-13C contains 13C at the C2 position and has been used in the study of free fatty acid incorporation into phospholipid fatty acids in soil microbes.1 Palmitic acid is a 16-carbon saturated fatty acid. It comprises approximately 25% of human total plasma lipids.2 It increases protein levels of COX-2 in RAW 264.7 cells when used at a concentration of 75 μM.3 Palmitic acid is involved in the acylation of proteins to anchor membrane-bound proteins to the lipid bilayer.3,4,5,6,7
Pal-KTTKS is a lipidated pentapeptide consisting of a fragment of the type I collagen C-terminal propeptide conjugated to palmitic acid .1 It increases collagen production in human corneal and dermal fibroblasts when used at concentrations of 0.002, 0.004, and 0.008 wt%.2 Following topical administration, pal-KTTKS (50 μg/cm2) is found in the stratum corneum, epidermis, and dermis of isolated hairless mouse skin.1 It can self-assemble into flat tapes and extended fibrillar structures.3 Pal-KTTKS has been detected in anti-wrinkle creams.4 |1. Choi, Y.L., Park, E.J., Kim, E., et al. Dermal stability and in vitro skin permeation of collagen pentapeptides (KTTKS and palmitoyl-KTTKS). Biomol. Ther. (Seoul) 22(4), 321-327 (2014).|2. Jones, R.R., Castelletto, V., Connon, C.J., et al. Collagen stimulating effect of peptide amphiphile C16-KTTKS on human fibroblasts. Mol. Pharm. 10(3), 1063-1069 (2013).|3. Castelletto, V., Hamley, I.W., Whitehouse, C., et al. Self-assembly of palmitoyl lipopeptides used in skin care products. Langmuir 29(29), 9149-9155 (2013).|4. Chirita, R.-I., Chaimbbault, P., Archambault, J.-C., et al. Development of a LC-MS/MS method to monitor palmitoyl peptides content in anti-wrinkle cosmetics. Anal. Chim. Acta 641(1-2), 95-100 (2009).