Talabostat (PT100, Val-boroPro) is a potent, nonselective and orally available dipeptidyl peptidase IV (DPP-IV) inhibitor with a Ki of 0.18 nM. Talabostat is a nonselective DPP-IV inhibitor, inhibiting DPP8 9, FAP, DPP2 and some other DASH family enzymes essentially as potently as it inhibits DPP-IV[1]. Talabostat stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. The inhibition of two serine proteases, DPP8 and DPP9, activates the proprotein form of caspase-1 independent of the inflammasome adaptor ASC[2]. Talabostat competitively inhibits the dipeptidyl peptidase (DPP) activity of FAP and CD26 DPP-IV, and there is a high-affinity interaction with the catalytic site due to the formation of a complex between Ser630 624 and the boron of talabostat[3]. Talabostat can stimulate immune responses against tumors involving both the innate and adaptive branches of the immune system. In WEHI 164 fibrosarcoma and EL4 and A20 2J lymphoma models, PT-100 causes regression and rejection of tumors. The antitumor effect appears to involve tumor-specific CTL and protective immunological memory. Talabostat treatment of WEHI 164-inoculated mice increases mRNA expression of cytokines and chemokines known to promote T-cell priming and chemoattraction of T cells and innate effector cells[3]. Talabostat treated mice show significant less fibrosis and FAP expression is reduced. Upon PT100 treatment, significant differences in the MMP-12, MIP-1α, and MCP-3 mRNA expression levels in the lungs are also observed. Treatment with PT100 in this murine model of pulmonary fibrosis has an anti-fibro-proliferative effect and increases macrophage activation[4]. [1]. Connolly BA, et al. Dipeptide boronic acid inhibitors of dipeptidyl peptidase IV: determinants of potencyand in vivo efficacy and safety. J Med Chem. 2008 Oct 9;51(19):6005-13. [2]. Okondo MC, et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol. 2017 Jan;13(1):46-53. [3]. Adams S, et al. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism. Cancer Res. 2004 Aug 1;64(15):5471-80. [4]. Egger C, et al. Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis. Eur J Pharmacol. 2017 Aug 15;809:64-72.
FL3 is a novel potent eIF4F inhibitor, it induces the death of cancer cells by an original mechanism that involves the apoptosis-inducing factor and caspase12.
2-chloro Palmitic acid is a monochlorinated form of palmitic acid . It is produced in a myeloperoxidase (MPO) and time-dependent manner in neutrophils stimulated by phorbol 12-myristate 13-acetate . 2-chloro Palmitic acid (10 μM) induces neutrophil extracellular trap (NET) formation (NETosis) in human neutrophils, increasing DNA release from neutrophils, colocalization of MPO with extracellular DNA (ecDNA), and trapping of E. coli. It increases COX-2 protein levels in human coronary artery endothelial cells (HCAECs) when used at a concentration of 50 μM and increases production of P-selectin, von Willebrand factor, and angiopoietin-2 in HCAECs, as well as neutrophil and platelet adherence, when used at a concentration of 10 μM. 2-chloro Palmitic acid (10-50 μM) also induces apoptosis in THP-1 cells and primary human monocytes and increases caspase-3 activity in THP-1 cells.
Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1 2 by MEK1 2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0 G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013). Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1 2 by MEK1 2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0 G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3 References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013).