JAY2-22-33, as a neuroprotective agent, can act by significantly reducing Aβ toxicity by delaying paralysis and improving cognitive performances in a transgenic mouse model of AD.
SAR502250 is a potent, selective, ATP competitive, orally active and brain-penetrant inhibitor of GSK3, with an IC50 of 12 nM for human GSK-3β. SAR502250 displays antidepressant-like activity. SAR502250 can be used for the research of Alzheimer’s disease (AD)[1][2]. SAR502250 (0.01-1 μM; 36 h) attenuates the Aβ25-35-induced cell death in rat embryonic hippocampal neurons[2]. SAR502250 (1-100 mg kg; a single p.o,) attenuates tau hyperphosphorylation in the cortex and spinal cord of transgenic mice expressing P301L tau[2].SAR502250 (10-30 mg kg; p.o. once daily for 7 weeks) improves the cognitive deficit in transgenic APP(SW) Tau(VLW) mice after infusion of Aβ25-35[2].SAR502250 (10-30 mg kg; a single p.o.) significantly increases the percentage of lever-presses in the inter-response time (IRT) bin (49-96 s), with a significant augmentation of the percentage of reinforced responses[2].SAR502250 (30 mg kg; i.p. once daily for 28 d) ameliorates chronic stress-induced degradation of the physical state of the mice coat[2].SAR502250 (10-60 mg kg; a single p.o.) decreases hyperactivity produced by psychostimulantsin mice[2]. [1]. Fukunaga K, et, al. 2-(2-Phenylmorpholin-4-yl)pyrimidin-4(3H)-ones; a new class of potent, selective and orally active glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett. 2013 Dec 15;23(24):6933-7.[2]. Griebel G, et, al. The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer’s disease in rodents. Sci Rep. 2019 Dec 2;9(1):18045.
Pinolenic acid is a polyunsaturated fatty acid found in Korean pine (Pinus orientalis) and maritime pine (Pinus pinaster) seed oils. Both oils have been found to have lipid-lowering properties. A diet containing maritime pine seed oil (MPSO) lowered high-density lipoprotein and ApoA1 levels in transgenic mice expressing human ApoA1. MPSO was found to diminish cholesterol efflux in vitro. Korean pine seed oil supplements may help in obesity by reduction of appetite. People taking this oil had an increase in the satiety hormones CCK and GLP-1 and a reduced desire to eat. The activity of the oil is attributed to pinolenic acid. Pinolenic acid is not converted to arachidonic acid metabolically and can reduce arachidonic acid levels in the phosphatidylinositol fraction of HepG2 cells from 15.9% to 7.0%. Pinolenic acid ethyl ester is a neutral, more lipophilic form of the free acid.
Peroxisome proliferator-activated receptors (PPARs) α, δ, γ are ligand-activated nuclear transcription factors involved in the regulation of energy homeostasis as well as insulin sensitivity and glucose metabolism. Pharmacologies of PPARδ receptor agonists, though relatively obscure, have recently been reported to elevate high-density lipoprotein (HDL) cholesterol and lower plasma triglyceride (TG) levels in obese insulin resistant rhesus monkeys. CAY10592 is a full PPARδ agonist (EC50 = 30 nM) in a fatty acid oxidation assay of rat L6 muscle cells with desirable oral pharmacokinetic properties. In a transactivation assay using human PPAR receptors, CAY10592 acts as a selective partial PPARδ agonist (EC50 = 53 nM) with no effect on PPARα or PPARγ activity up to 30 μM. Chronic treatment of high fat fed ApoB100/CETP-transgenic mice with CAY10592 at a dose of 20 mg/kg increases HDL levels, decreases LDL and TG levels, and improves insulin sensitivity.
AAA is an antagonist of G protein-coupled receptor 75 (GPR75).1It increases basal GPR75 protein levels and inhibits 20-HETE-induced reductions in GPR75 protein levels in PC3 cells. AAA (5 and 10 μM) also reduces 20-HETE-induced phosphorylation of EGFR, NF-κB, and Akt in, and cell migration of, PC3 cells.In vivo, AAA (10 mg/kg per day) reduces systolic blood pressure, albuminuria, renal angiotensin II levels, and cardiac hypertrophy in a Cyp1a1-Ren-2 transgenic rat model of malignant hypertension when administered prior to induction or after establishment of hypertension.2 1.Cárdenas, S., Colombero, C., Panelo, L., et al.GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cellsBiochim. Biophys. Acta Mol. Cell Biol. Lipids1865(2)158573(2020) 2.Sedláková, L., Kikerlová, S., Husková, Z., et al.20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic ratsBiosci. Rep.38(5)BSR20171496(2018)
Ceramide phosphoethanolamine (CPE) is an analog of sphingomyelin that contains ethanolamine rather than choline as the head group. It is the principal membrane phospholipid in invertebrates such as Drosophila, which lacks sphingomyelin. It is only produced in small amounts in mammalian cells, accounting for approximately 0.02 mol% of total phospholipids in mouse testis and brain. In Drosophila, CPE is biosynthesized by CPE synthase from ceramide and cytidine diphosphate-ethanolamine in the Golgi lumen. In mammals, it is biosynthesized by sphingomyelin synthase 2 (SMS2) in the plasma membrane and by sphingomyelin synthase-related protein (SMSr) in the endoplasmic reticulum (ER). In Drosophila, CPE has a role in glial ensheathment of axons. Disrupting CPE synthesis by depleting SMSr in vitro in mammalian cells leads to an accumulation of ER ceramides, which are then mislocalized to the mitochondria, inducing apoptosis. However, ceramide levels are not altered in transgenic mice lacking SMSr catalytic activity. CPEs (bovine) is a mixture of CPEs with variable N-acyl chain lengths.
5(Z),11(Z),14(Z)-Eicosatrienoic acid is a polyunsaturated fatty acid found in various natural sources including maritime pine (Pinus pinaster) seed oil (MPSO), gymnospermae leaves and seeds, and freshwater gastropods. A diet containing MPSO lowered high-density lipoprotein and ApoA1 levels in transgenic mice expressing human ApoA1. MPSO was found to diminish cholesterol efflux in vitro. 5(Z),11(Z),14(Z)-Eicosatrienoic acid methyl ester, when topically applied, reduces inflammatory processes, potentially by displacing arachidonic acid from phospholipid pools and reducing downstream inflammatory products such as prostaglandin E2 and leukotrienes.
The metallo-protein Cu/Zn-superoxide dismutase (SOD1) is a ubiquitous enzyme responsible for scavenging superoxide radicals. Mutations in SOD1, which alter its metal binding capacity and can result in protein misfolding and aggregation, have been linked to familial amyotrophic lateral sclerosis (ALS). Cu-ATSM is an orally bioavailable, blood-brain barrier permeable complex that has traditionally been used in cellular imaging experiments to selectively label hypoxic tissue via its susceptibility to reduction by oxygen-depleted mitochondria. More recently, Cu-ATSM has been reported to improve locomotor function and survival in a transgenic ALS mouse model by delivering copper specifically to cells in the spinal cords of mice producing misfolded SOD1 proteins. Copper chaperone for SOD (CCS) is presumed to utilize the copper from Cu-ATSM to prevent misfolding of the SOD1 protein.
Alaproclate is a selective serotonin reuptake inhibitor (SSRI).1,2 It inhibits depletion of serotonin (5-HT) induced by 4-methyl-α-ethyl-m-tyramine in rat cerebral cortex, hippocampus, hypothalamus, and striatum (EC50s = 18, 4, 8, and 12 mg kg, respectively).1 Alaproclate inhibits NMDA-evoked currents and depolarization-induced voltage-dependent potassium currents in rat hippocampal neurons (IC50s = 1.1 and 6.9 μM, respectively) and does not inhibit GABA-evoked currents when used at concentrations up to 100 μM.2 It increases sirtuin 1 (SIRT1) levels in N2a murine neuroblastoma cells expressing apolipoprotein E4 (ApoE4; IC50 = 2.3 μM) and in the hippocampus in the FXFAD-ApoE4 transgenic mouse model of Alzheimer's disease when administered at a dose of 20 mg kg twice daily.3 Alaproclate (40 mg kg) decreases immobility time in the forced swim test in rats, indicating antidepressant-like activity.4References1. Michael, G.B., Eidam, C., Kadlec, K., et al. Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm(42) and msr(E)-mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. Journal of Antimicrobial Chemotherapy 67(6), 1555-1557 (2012).2. Svensson, B.E., Werkman, T.R., and Rogawski, M.A. Alaproclate effects on voltage-dependent K+ channels and NMDA receptors: Studies in cultured rat hippocampal neurons and fibroblast cells transformed with Kv1.2 K+ channel cDNA. Neuropharmacology 33(6), 795-804 (1994).3. Campagna, J., Soilman, P., Jagodzinska, B., et al. A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer's disease mouse model. Sci. Rep. 8(1), 17574 (2018).4. Danysz, W.P., A., Kostowski, W., Malatynska, E., et al. Comparison of desipramine, amitriptyline, zimeldine and alaproclate in six animal models used to investigate antidepressant drugs. Pharmacol. Toxicol. 62(1), 42-50 (1988). Alaproclate is a selective serotonin reuptake inhibitor (SSRI).1,2 It inhibits depletion of serotonin (5-HT) induced by 4-methyl-α-ethyl-m-tyramine in rat cerebral cortex, hippocampus, hypothalamus, and striatum (EC50s = 18, 4, 8, and 12 mg kg, respectively).1 Alaproclate inhibits NMDA-evoked currents and depolarization-induced voltage-dependent potassium currents in rat hippocampal neurons (IC50s = 1.1 and 6.9 μM, respectively) and does not inhibit GABA-evoked currents when used at concentrations up to 100 μM.2 It increases sirtuin 1 (SIRT1) levels in N2a murine neuroblastoma cells expressing apolipoprotein E4 (ApoE4; IC50 = 2.3 μM) and in the hippocampus in the FXFAD-ApoE4 transgenic mouse model of Alzheimer's disease when administered at a dose of 20 mg kg twice daily.3 Alaproclate (40 mg kg) decreases immobility time in the forced swim test in rats, indicating antidepressant-like activity.4 References1. Michael, G.B., Eidam, C., Kadlec, K., et al. Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm(42) and msr(E)-mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. Journal of Antimicrobial Chemotherapy 67(6), 1555-1557 (2012).2. Svensson, B.E., Werkman, T.R., and Rogawski, M.A. Alaproclate effects on voltage-dependent K+ channels and NMDA receptors: Studies in cultured rat hippocampal neurons and fibroblast cells transformed with Kv1.2 K+ channel cDNA. Neuropharmacology 33(6), 795-804 (1994).3. Campagna, J., Soilman, P., Jagodzinska, B., et al. A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer's disease mouse model. Sci. Rep. 8(1), 17574 (2018).4. Danysz, W.P., A., Kostowski, W., Malatynska, E., et al. Comparison of desipramine, amitriptyline, zimeldine and alaproclate in six animal models used to investigate antidepressant drugs. Pharmacol. Toxicol. 62(1), 42-50 (1988).
Donecopride is a partial agonist of the serotonin (5-HT) receptor subtype 5-HT4E(Ki= 8.5 nM) and an inhibitor of acetylcholinesterase (AChE; IC50= 16 nM).1It is selective for AChE over butyrylcholinesterase (BChE; IC50= 3,530 nM) but does bind to 5-HT2Band sigma-2 (σ2) receptors (Ki= 1.6 nM for both) in a panel of 42 neurotransmitter receptors and transporters. Donecopride induces release of soluble amyloid precursor protein-α (sAPP-α) in COS-7 cells transiently expressing 5-HT4with an EC50value of 11.3 nM. Oral administration of donecopride (1 mg/kg) reduces brain soluble and insoluble amyloid-β (1-42) levels and increases the time spent exploring the novel object in the novel object recognition (NOR) test in the 5XFAD transgenic mouse model of Alzheimer's disease. Donecopride (3 mg/kg, p.o.) prevents a reduction in spontaneous alternation behavior induced by intracerebroventricular administration of soluble Aβ42 (sAβ42) in the Y-maze in mice.2 1.Lecoutey, C., Hedou, D., Freret, T., et al.Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatmentProc. Natl. Acad. Sci. USA111(36)E3825-E3830(2014) 2.Rochais, C., Lecoutey, C., Hamidouche, K., et al.Donecopride, a Swiss army knife with potential against Alzheimer's diseaseBr. J. Pharmacol.177(9)1988-2005(2020)
Pramlintide is a non-amyloidogenic analog of the antidiabetic peptide hormone amylin that contains proline residues substituted at positions 25, 28, and 29. It stimulates cAMP production in HEK293 cells expressing human amylin receptor 1a (AMY1a), AMY2a, and AMY3a (EC50s = 0.35, 22.9, and 0.89 nM, respectively). Pramlintide inhibits human islet amyloid polypeptide fibrilization in a concentration-dependent manner. In vivo, pramlintide (200 pg/kg) reduces brain levels of amyloid-β (1-40) and increases spontaneous alternation in the Y-maze in the Tg2576 transgenic mouse model of Alzheimer's disease.
Lyso-globotriaosylceramide is a form of globotriaosylceramide that is lacking the fatty acyl group. It binds to Shiga toxin 1 (Stx1) in the presence of cholesterol and phosphatidylcholine but does not bind Stx2. It also reduces viability and aggregation of human neutrophils induced by phorbol 12-myristate 13-acetate when used at concentrations of 50 and 1 μM, respectively. Lyso-globotriaosylceramide accumulates in the brain, heart, kidney, liver, lung, and spleen in a mouse model of Fabry disease, a lysosomal storage disorder characterized by a deficiency in the enzyme α-galactosidase A. It also accumulates in the urine, kidney, and plasma of patients with Fabry disease. Lyso-globotriaosylceramide levels decrease in response to administration of the α-galactosidase inhibitor 1-deoxygalactonojirimycin in a transgenic mouse model of Fabry disease. Decreases in plasma and urine concentrations of lyso-globotriaosylceramide have been used as a biomarker for efficacy of enzyme replacement therapy (ERT) and other therapies in the treatment of Fabry disease.