首页 工具
登录
购物车
Cisplatin

Cisplatin

产品编号 T1564   CAS 15663-27-1
别名: cis-Diaminodichloroplatinum, CDDP, 顺铂

Cisplatin (CDDP) 是一种 DNA 交联剂。Cisplatin 具有抗肿瘤活性,能够通过在癌细胞中形成 DNA 加合物来抑制 DNA 合成。Cisplatin 还可激活铁死亡并诱导自噬

TargetMol的所有产品和服务仅用于科学研究,不能被用于人体,我们也不向个人提供产品和服务。
Cisplatin Chemical Structure
Cisplatin, CAS 15663-27-1
规格 价格/CNY 货期 数量
100 mg ¥ 348 现货
500 mg ¥ 918 现货
1 g ¥ 1,543 现货
千万补贴 助力科研
BCA蛋白浓度测定试剂盒限时半价
重组蛋白限时优惠
产品目录号及名称: Cisplatin (T1564)
点击图片重新获取验证码
选择批次  
纯度: 99.62%
纯度: 99.6%
纯度: 99.54%
纯度: 99.27%
纯度: 98.11%
纯度: 98%
纯度: 98%
TargetMol batch loading
更多批次查询请联系客服
生物活性
化学信息
存储 & 溶解度
参考文献
产品描述 Cisplatin (CDDP) is a DNA cross-linking agent. Cisplatin has antitumor activity and inhibits DNA synthesis by forming DNA adducts in cancer cells. Cisplatin also activates iron death and induces autophagy.
体外活性 方法:人非小细胞肺癌细胞 A549、SKMES-1、MOR 和 H460 用 Cisplatin (0.001-100 μM) 处理 72 h,使用 MTT 方法检测细胞生长抑制情况。
结果:Cisplatin 剂量依赖性地抑制 A549、SKMES-1、MOR 和 H460 细胞生长,IC50 分别为 1.58 µM、4.09 µM、6.39 µM 和 5.72 µM。[1]
方法:人乳腺癌 MCF-7 和 MDA-MB-231 用 Cisplatin (2-10 μg/mL) 处理 48 h,使用 Western Blot 方法检测靶点蛋白表达水平。
结果:Cisplatin 剂量依赖性诱导 MCF-7 和 MDA-MB-231 细胞中凋亡相关蛋白 cleaved-caspase 3 和 cleaved-PARP 的水平增加。[2]
方法:间皮瘤细胞 JU77、LO68 和 ONE58 用 Cisplatin (5-100 μg/mL) 处理 24 h,使用 JC-1 染料检测线粒体膜电位 (MMP)。
结果:Cisplatin 剂量依赖性降低 JU77、LO68 和 ONE58 细胞的 MMP,抑制线粒体功能。[3]
体内活性 方法:为检测体内抗肿瘤活性,将 Cisplatin (5 mg/kg/6 天) 和 Chloroquine (13  mg/kg/天) 腹腔注射给携带咽下鳞状细胞癌肿瘤 (HSCC) FaDu 的 BALB/c nude 小鼠,持续十八天。
结果:Cisplatin 治疗显著抑制 HSCC 肿瘤生长,Chloroquine 抑制自噬并增加 Cisplatin 诱导的细胞凋亡,从而增强了 Cisplatin 的疗效,导致小鼠的肿瘤生长减少和生存期延长。[4]
方法:为减轻 Cisplatin 治疗引起的肾毒性,将 Cisplatin (3-6 mg/kg/3天) 腹腔注射和 Cilastatin (100  mg/kg/天) 皮下注射给人肺腺癌肿瘤 A549 的 BALB/c 小鼠,持续七天。
结果:Cilastatin 可以在不影响 Cisplatin 抗肿瘤作用的情况下减少其诱导的肾毒性。[5]
细胞实验 Rabbit renal proximal tubules were isolated using the iron oxide perfusion method and grown in 35-mm tissue culture dishes under improved conditions as described previously. The cell culture medium was a 1:1 mixture of Dulbecco's modified Eagle's medium/Ham's F-12 (without D-glucose, phenol red, or sodium pyruvate) supplemented with 15 mM HEPES buffer, 2.5 mM L-glutamine, 1 μM pyridoxine HCl, 15 mM sodium bicarbonate, and 6 mM lactate. Hydrocortisone (50 nM), selenium (5 ng/ml), human transferrin (5 μg/ml), bovine insulin (10 nM), and L-ascorbic acid-2-phosphate (50 μM) were added to fresh culture medium immediately before daily media change. In general, confluent RPTCs were treated with inhibitors or diluent control [typically DMSO at 0.1% (v/v)] for 30 min before treatment with cisplatin. Aliquots of RPTCs were used for various assays as detailed below [1].
动物实验 Mice were divided randomly into three groups (Control, Cisplatin and Cisplatin+HemoHIM), and each group consisted of twenty mice. B16F0 melanoma (5 × 10^5 cells/mouse) was inoculated into subcutaneous femoral left region of mice at 3 days before an initial injection of cisplatin. Cisplatin was injected intraperitoneally at 4 mg/kg body weight (B.W.) on day 0, 7 and 14 (total three injections). Experimental group was intubated with HemoHIM at a final concentration of 100 mg/kgB.W. by everyday from day -1 to day 16, while the control group received only water. On day 17 after initial injection of cisplatin, all mice of each group were experimented, respectively, to evaluate tumor weight or tumor size. The tumor size was calculated as follows: tumor size = ab^2/2, where a and b are the larger and smaller diameters, respectively [3].
别名 cis-Diaminodichloroplatinum, CDDP, 顺铂
化合物与蛋白结合的复合物

T1564_2

Solution Structures of a DNA Dodecamer Duplex with a Cisplatin 1,2-d(GG) Intrastrand Cross-Link

分子量 300.04
分子式 Cl2H6N2Pt
CAS No. 15663-27-1

存储

keep away from direct sunlight | Powder: -20°C for 3 years | In solvent: -80°C for 1 year

溶解度

H2O: 3.33mg/ml(11.1mM), Sonication is recommended. (DMSO inactivates the activity of Cisplatin.)

DMF: 20mg/ml(66.7mM)

溶液配制表

可选溶剂 浓度 体积 质量 1 mg 5 mg 10 mg 25 mg
H2O / DMF 1 mM 3.3329 mL 16.6644 mL 33.3289 mL 83.3222 mL
5 mM 0.6666 mL 3.3329 mL 6.6658 mL 16.6644 mL
10 mM 0.3333 mL 1.6664 mL 3.3329 mL 8.3322 mL
DMF 20 mM 0.1666 mL 0.8332 mL 1.6664 mL 4.1661 mL
50 mM 0.0667 mL 0.3333 mL 0.6666 mL 1.6664 mL

TargetMol Calculator计算器

摩尔浓度计算器
稀释计算器
配液计算器
分子量计算器
=
X
X
X
=
X
=
/
g/mol

输入分子式,点击计算,可计算出产品的分子量。

TargetMol Library Books参考文献

1. Barr MP, et al. Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS One. 2013;8(1):e54193. 2. Jiang Y, et al. Cisplatin-induced autophagy protects breast cancer cells from apoptosis by regulating yes-associated protein. Oncol Rep. 2017 Dec;38(6):3668-3676. 3. Cregan IL, et al. Mechanisms of cisplatin-induced cell death in malignant mesothelioma cells: role of inhibitor of apoptosis proteins (IAPs) and caspases. Int J Oncol. 2013 Feb;42(2):444-52. 4. Zhao XG, et al. Chloroquine-enhanced efficacy of cisplatin in the treatment of hypopharyngeal carcinoma in xenograft mice. PLoS One. 2015 Apr 29;10(4):e0126147. 5. Arita M, et al. Combination therapy of cisplatin with cilastatin enables an increased dose of cisplatin, enhancing its antitumor effect by suppression of nephrotoxicity. Sci Rep. 2021 Jan 12;11(1):750. 6. Shao C S, Zhou X H, Zheng X X, et al. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells[J]. Journal of Ethnopharmacology. 2020, 262: 113213. 7. Wu Y, Zhou L, Wang Z, et al. Systematic screening for potential therapeutic targets in osteosarcoma through a kinome-wide CRISPR-Cas9 library[J]. Cancer Biology & Medicine. 2020, 17(3): 782. 8. Wang C, Xiong M, Yang C, et al. PEGylated and Acylated Elabela Analogues Show Enhanced Receptor Binding, Prolonged Stability, and Remedy of Acute Kidney Injury[J]. Journal of Medicinal Chemistry. 2020 9. Kang C L, Qi B, Cai Q Q, et al. LncRNA AY promotes hepatocellular carcinoma metastasis by stimulating ITGAV transcription. Theranostics. 2019, 9(15): 4421. 10. Liu L, Liu S, Deng P, et al. Targeting the IRAK1-S100A9 Axis Overcomes Resistance to Paclitaxel in Nasopharyngeal Carcinoma[J]. Cancer Research.

TargetMol Library Books文献引用

1. Zhu C, Xie Y, Li Q, et al.CPSF6-mediated XBP1 3’UTR shortening attenuates cisplatin-induced ER stress and elevates chemo-resistance in lung adenocarcinoma.Drug Resistance Updates.2023: 100933. 2. Yang C, Xu H, Yang D, et al.A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury.Nature Communications.2023, 14(1): 4261. 3. Liu X, Cen X, Wu R, et al.ARIH1 activates STING-mediated T-cell activation and sensitizes tumors to immune checkpoint blockade.Nature Communications.2023, 14(1): 4066. 4. Bi G, Liang J, Shan G, et al.Retinol saturase mediates retinoid metabolism to impair a ferroptosis defense system in cancer cells.Cancer Research.2023: CAN-22-3977. 5. Zhao X, Lian X, Xie J, et al.Accumulated cholesterol protects tumours from elevated lipid peroxidation in the microenvironment.Redox Biology.2023: 102678. 6. Qu Y Q, Song L L, Xu S W, et al.Pomiferin targets SERCA, mTOR, and P-gp to induce autophagic cell death in apoptosis-resistant cancer cells, and reverses the MDR phenotype in cisplatin-resistant tumors in vivo.Pharmacological Research.2023: 106769. 7. Yang D, Fan Y, Xiong M, et al.Loss of renal tubular G9a benefits acute kidney injury by lowering focal lipid accumulation via CES1.EMBO reports.2023: e56128. 8. Zhu X, Huang N, Ji Y, et al.Brusatol induces ferroptosis in oesophageal squamous cell carcinoma by repressing GSH synthesis and increasing the labile iron pool via inhibition of the NRF2 pathway.Biomedicine & Pharmacotherapy.2023, 167: 115567. 9. Zhao G, Liang J, Shan G, et al.KLF11 regulates lung adenocarcinoma ferroptosis and chemosensitivity by suppressing GPX4.Communications Biology.2023, 6(1): 570. 10. Song M, Fang Z, Wang J, et al.A Nano-targeted Co-delivery System Based on Gene Regulation and Molecular Blocking Strategy for Synergistic Enhancement of Platinum Chemotherapy Sensitivity in Ovarian Cancer.International Journal of Pharmaceutics.2023: 123022.
11. Ma X Y, Xu H Q, Zhao J F, et al.Discovery of a Novel Bloom’s Syndrome Protein (BLM) Inhibitor Suppressing Growth and Metastasis of Prostate Cancer.International journal of molecular sciences.2022, 23(23): 14798. 12. Lin X, Chen J, Li X, et al.Dimeric oxyberberine CT4-1 targets LINC02331 to induce cytotoxicity and inhibit chemoresistance via suppressing Wnt/β-catenin signaling in hepatocellular carcinoma.Archives of Toxicology.2023: 1-21. 13. Wu Z, Yuan C, Zhang Z, et al.Paris saponins Ⅶ inhibits glycolysis of ovarian cancer via the RORC/ACK1 signaling pathway.Biochemical Pharmacology.2023: 115597. 14. Ma X Y, Zhao J F, Ruan Y, et al.ML216-Induced BLM Helicase Inhibition Sensitizes PCa Cells to the DNA-Crosslinking Agent Cisplatin.Molecules.2022, 27(24): 8790. 15. Bu X, Zhang J, Sun H, et al.SEC61 translocon subunit gamma enhances low-dose cisplatin-induced cancer-stem cell properties of head and neck squamous cell carcinoma via enhancing Ca2+-mediated autophagy.Journal of Dental Sciences.2023 16. Liang J, Zhao G, Bian Y, et al.HNF4G increases cisplatin resistance in lung adenocarcinoma via the MAPK6/Akt pathway.PeerJ.2023, 11: e14996. 17. Li J, Kou Y, Zhang X, et al.Biochanin A inhibits lung adenocarcinoma progression by targeting ZEB1.Discover Oncology.2022, 13(1): 1-14. 18. Wu L L, Jiang W M, Liu Z Y, et al.AMG-510 and cisplatin combination increases antitumor effect in lung adenocarcinoma with mutation of KRAS G12C: a preclinical and translational research.Discover Oncology.2023, 14(1): 91. 19. Chen Y, Shi J, Wang X, et al.An antioxidant feedforward cycle coordinated by linker histone variant H1. 2 and NRF2 that drives nonsmall cell lung cancer progression.Proceedings of the National Academy of Sciences.2023, 120(39): e2306288120. 20. Pak M E, Park Y J, Yang H J, et al. Samhwangsasim-tang attenuates neuronal apoptosis and cognitive decline through BDNF-mediated activation of tyrosin kinase B and p75-neurotrophin receptors. Phytomedicine. 2022: 153997. 21. Wang P, Yang W, Guo H, et al. IL‐36γ and IL‐36Ra Reciprocally Regulate NSCLC Progression by Modulating GSH Homeostasis and Oxidative Stress‐Induced Cell Death. Advanced Science. 2021: 2101501. 22. Glorieux C, Xia X, You X, et al. Cisplatin and gemcitabine exert opposite effects on immunotherapy with PD-1 antibody in K-ras-driven cancer. Journal of Advanced Research. 2021 23. Zhang T, Xu C, Zheng P, et al. Glaucocalyxin B Attenuates Ovarian Cancer Cell Growth and Cisplatin Resistance In Vitro via Activating Oxidative Stress. Oxidative Medicine and Cellular Longevity. 2022 24. Feng J, Xi Z, Jiang X, et al. Saikosaponin a enhances Docetaxel efficacy by selectively inducing death of dormant prostate cancer cells through excessive autophagy. Cancer Letters. 2022: 216011. 25. Liu L, Liu S, Deng P, et al. Targeting the IRAK1-S100A9 Axis Overcomes Resistance to Paclitaxel in Nasopharyngeal Carcinoma. Cancer Research. 2021 Mar 1;81(5):1413-1425. doi: 10.1158/0008-5472.CAN-20-2125. Epub 2021 Jan 5. 26. Liu L, Liu S, Deng P, et al. Targeting the IRAK1–S100A9 Axis Overcomes Resistance to Paclitaxel in Nasopharyngeal Carcinoma. Cancer Research. 2021, 81(5): 1413-1425. 27. Bi G, Liang J, Zhao M, et al. MiR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma by targeting CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Molecular Therapy-Nucleic Acids. 2022 28. Kang C L, Qi B, Cai Q Q, et al. LncRNA AY promotes hepatocellular carcinoma metastasis by stimulating ITGAV transcription. Theranostics. 2019, 9(15): 4421 29. Luo X, Cai G, Guo Y, et al. Exploring Marine-Derived Ascochlorins as Novel Human Dihydroorotate Dehydrogenase Inhibitors for Treatment of Triple-Negative Breast Cancer. Journal of Medicinal Chemistry.. 30. Lü Z, Li X, Li K, et al. Nitazoxanide and related thiazolides induce cell death in cancer cells by targeting the 20S proteasome with novel binding modes. Biochemical Pharmacology. 2022: 114913. 31. Wang C, Xiong M, Yang C, et al. PEGylated and Acylated Elabela Analogues Show Enhanced Receptor Binding, Prolonged Stability, and Remedy of Acute Kidney Injury. Journal of Medicinal Chemistry. 2020 32. Wu Y, Zhou L, Wang Z, et al. Systematic screening for potential therapeutic targets in osteosarcoma through a kinome-wide CRISPR-Cas9 library. Cancer Biology & Medicine. 2020, 17(3): 782. 33. Cheng Y, Wang Q, Zhang Z, et al. Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine. 2022: 154133 34. Zhang H, Shan G, Jin X, et al. ARNTL2 is an indicator of poor prognosis, promotes epithelial-to-mesenchymal transition and inhibits ferroptosis in lung adenocarcinoma. Translational Oncology. 2022, 26: 101562. 35. Shao C S, Zhou X H, Zheng X X, et al. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells. Journal of Ethnopharmacology. 2020, 262: 113213. 36. Xu C, Zhao W, Huang X, et al. TORC2/3-mediated DUSP1 upregulation is essential for human decidualization. Reproduction. 2021, 1(aop). 37. Kong F, Liu X, Zhou Y, et al. Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. The International Journal of Biochemistry & Cell Biology. 2020: 105731 38. Guo X, Fang Z, Zhang M, et al. A Co-Delivery System of Curcumin and p53 for Enhancing the Sensitivity of Drug-Resistant Ovarian Cancer Cells to Cisplatin. Molecules. 2020, 25(11): 2621 39. Kasiram M Z, Hapidin H, Abdullah H, et al. Tannic acid enhances cisplatin effect on cell proliferation and apoptosis of human osteosarcoma cell line (U2OS). Pharmacological Reports. 2021: 1-14. 40. Sun J, Liu W, Li Y, et al. An on-chip cell culturing and combinatorial drug screening system. Microfluidics and Nanofluidics. 2017 Jul 21(7): 125. 41. Zhao F, Huang Y, Zhang Y, et al. SQLE inhibition suppresses the development of pancreatic ductal adenocarcinoma and enhances its sensitivity to chemotherapeutic agents in vitro. Molecular Biology Reports. 2022: 1-9 42. Su W, Li Y, Zhang L, et al. Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips. SLAS TECHNOLOGY: Translating Life Sciences Innovation. 2019: 2472630319867903. 43. Liu S, Chai T, Garcia-Marques F, et al.UCHL1 is a potential molecular indicator and therapeutic target for neuroendocrine carcinomas.Cell Reports Medicine.2024 44. Zhang H, Li Q, Guo X, et al.MGMT activated by Wnt pathway promotes cisplatin tolerance through inducing slow-cycling cells and nonhomologous end joining in colorectal cancer.Journal of Pharmaceutical Analysis.2024 45. Tan X D, Luo C F, Liang S Y.Antihyperlipidemic drug rosuvastatin suppressed tumor progression and potentiated chemosensitivity by downregulating CCNA2 in lung adenocarcinoma.Journal of Chemotherapy.2024: 1-13. 46. Liu Y, Wu Q, Jiang B, et al.Distinct regulation of ASCL1 by the cell cycle and chemotherapy in small cell lung cancer.Molecular Cancer Research.2024 47. Bi G, Liang J, Bian Y, et al.Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer.Nature Communications.2024, 15(1): 2461. 48. Li Y, Li G, Zuo C, et al.Discovery of ganoderic acid A (GAA) PROTACs as MDM2 protein degraders for the treatment of breast cancer.European Journal of Medicinal Chemistry.2024, 270: 116367.
收起
N-Nitroso-N-methylurea PK11000 Cyclophosphamide hydrate Ifosfamide Streptozocin Lomustine Carboplatin VAL-083

相关化合物库

该产品包含在如下化合物库中:
药物功能重定位化合物库 酪氨酸激酶分子库 抗癌临床化合物库 抗癌活性化合物库 抗癌上市药物库 抗癌药物库 抑制剂库 抗肝癌化合物库 抗肺癌化合物库 人代谢物化合物库

TargetMol Calculator剂量换算

对于不同动物的给药剂量换算,您也可以参考 更多...

TargetMol Calculator 体内实验配液计算器

请在以下方框中输入您的动物实验信息后点击计算,可以得到母液配置方法和体内配方的制备方法: 比如您的给药剂量是10 mg/kg,每只动物体重20 g,给药体积100 μL,一共给药动物10 只,您使用的配方为5% DMSO+30% PEG300+5% Tween 80+60% ddH2O。那么您的工作液浓度为2 mg/mL。

母液配置方法:2 mg 药物溶于 50 μL DMSO (母液浓度为 40 mg/mL), 如您需要配置的浓度超过该产品的溶解度,请先与我们联系。

体内配方的制备方法:取 50 μL DMSO 主液,加入 300 μL PEG300, 混匀澄清,再加 50 μL Tween 80,混匀澄清,再加 600 μL ddH2O, 混匀澄清。

第一步:请输入动物实验的基本信息
剂量
mg/kg
每只动物体重
g
给药体积
μL
动物数量
第二步:请输入动物体内配方组成,不同的产品配方组成不同,如有配方需求,可先联系我们提供正确的体内配方。
% DMSO
%
% Tween 80
% ddH2O
计算 重置

技术支持

您可能有的问题的答案可以在抑制剂处理说明中找到,包括如何准备库存溶液,如何存储产品,以及基于细胞的分析和动物实验需要特别注意的问题。

Keywords

Cisplatin 15663-27-1 Apoptosis Autophagy Cell Cycle/Checkpoint DNA Damage/DNA Repair DNA Alkylator/Crosslinker Ferroptosis DNA/RNA Synthesis cis-Platinum drug cross-linking cis-Diaminodichloroplatinum antineoplastic damage CDDP inhibit Inhibitor 顺铂 chemotherapy DNA inhibitor

 

TargetMol Loading
陶术
生物
TargetMol®中国区唯一合作伙伴
点击进入陶术生物官网陶术生物
联系我们
400-820-0310

上海市静安区江场三路238号8楼