α-Melanocyte-stimulating hormone (α-MSH) is a 13-amino acid peptide hormone produced by post-translational processing of proopiomelanocortin (POMC) in the pituitary gland, as well as in keratinocytes, astrocytes, monocytes, and gastrointestinal cells.1It is an agonist of melanocortin receptor 3 (MC3R) and MC4R that induces cAMP production in Hepa cells expressing the human receptors (EC50s = 0.16 and 56 nM, respectively).2α-MSH (100 pM) reducesS. aureuscolony formation andC. albicansgerm tube formationin vitro.3It inhibits endotoxin-, ceramide-, TNF-α-, or okadaic acid-induced activation of NF-κB in U937 cells.1α-MSH reduces IL-6- or TNF-α-induced ear edema in mice.4It also prevents the development of adjuvant-induced arthritis in rats and increases survival in a mouse model of septic shock. Increased plasma levels of α-MSH are positively correlated with delayed disease progression and reduced death in patients with HIV.1 1.Catania, A., Airaghi, L., Colombo, G., et al.α-melanocyte-stimulating hormone in normal human physiology and disease statesTrends Endocrinol. Metab.11(8)304-308(2000) 2.Miwa, H., Gantz, I., Konda, Y., et al.Structural determinants of the melanocortin peptides required for activation of melanocortin-3 and melanocortin-4 receptorsJ. Pharmacol. Exp. Ther.273(1)367-372(1995) 3.Cutuli, M., Cristiani, S., Lipton, J.M., et al.Antimicrobial effects of a-MSH peptidesJ. Leukoc. Biol.67(2)233-239(2000) 4.Lipton, J.M., Ceriani, G., Macaluso, A., et al.Antiiinflammatory effect of the neuropeptide a-MSH in acute, chronic, and systemic inflammationAnn. N.Y. Acad. Sci.25(741)137-148(1994)
Tpl2 kinase inhibitor is an inhibitor of tumor progression locus 2 (Tpl2; IC50= 0.05 μM).1It is selective for Tpl2 over MEK, p38 MAPK, Src, MK2, and PKC (IC50s = >40, 180, >400, 110, and >400 μM, respectively). Tpl2 kinase inhibitor inhibits LPS-induced TNF-α production in isolated human monocytes and whole blood (IC50s = 0.7 and 8.5 μM, respectively). It enhances differentiation induced by calcitriol in HL-60 and U937 leukemia cells when used at a concentration of 5 μM.2Tpl2 kinase inhibitor (5 μM) inhibits the proliferation of KG-1a leukemia cells.3 1.Garvin, L.K., Green, N., Hu, Y., et al.Inhibition of Tpl2 kinase and TNF-α production with 1,7-naphthyridine-3-carbonitriles: Synthesis and structure-activity relationshipsBioor. Med. Chem. Lett.15(23)5288-5292(2005) 2.Wang, X., and Studzinski, G.P.Expression of MAP3 kinase COT1 is up-regulated by 1,25-dihydroxyvitamin D3 in parallel with activated c-jun during differentiation of human myeloid leukemia cellsJ. Steroid. Biochem. Mol. Biol.121(1-2)395-398(2010) 3.Wang, X., Gocek, E., Novik, V., et al.Inhibition of Cot1/Tlp2 oncogene in AML cells reduces ERK5 activation and up-regulates p27Kip1 concomitant with enhancement of differentiation and cell cycle arrest induced by silibinin and 1,25-dihydroxyvitamin D3Cell Cycle9(22)4542-4551(2010)
SMU127 is an agonist of the toll-like receptor 1 2 (TLR1 2) heterodimer.1It induces NF-κB signaling in cells expressing human TLR2 (EC50= 0.55 μM) but not cells expressing human TLR3, -4, -5, -7, or -8 when used at concentrations ranging from 0.1 to 100 μM. SMU127 induces the production of TNF-α in isolated human peripheral blood mononuclear cells (PBMCs) when used at concentrations ranging from 0.01 to 1 μM.In vivo, SMU127 (0.1 mg animal) reduces tumor volume in a 4T1 murine mammary carcinoma model. 1.Chen, Z., Cen, X., Yang, J., et al.Structure-based discovery of a specific TLR1-TLR2 small molecule agonist from the ZINC drug library databaseChem. Commun. (Camb.)54(81)11411-11414(2018)
Sirtuins (SIRTs) represent a distinct class of trichostatin A-insensitive lysyl-deacetylases (class III HDACs). Human SIRT1 is the homolog of yeast silent information regulator 2 (Sir2) and has been shown to regulate the activity of the p53 tumor suppressor and inhibit apoptosis. Small molecule activators of SIRT1, such as resveratrol, extend lifespan in yeast and C. elegans in a manner that resembles caloric restriction. CAY10591 has been identified as an activator of the enzyme SIRT1. This compound increases fluorescence by 233% in a SIRT1 activity assay. [Activator activity was defined as the percentage of signal increase relative to signal window in the following formula: 100 x (Sample - Signallow)/(Signalhigh - Signallow)]. CAY10591 suppresses TNF-α in a dose-dependent manner. In THP-1 cells, TNF-α levels decreased from 325 pg/ml (control) to 104 and 53 pg/ml with 20 and 60 µM CAY10591, respectively. This activator also has a significant dose-dependent effect on fat mobilization in differentiated adipocytes, which would indicate the potential of SIRT1 activators for anti-obesity or anti-diabetic purposes.
9(Z),11(E)-Conjugated linoleic acid is an isomer of linoleic acid that has been found in beef and milk fat.1It binds to peroxisome proliferator-activated receptor α (PPARα; IC50= 140 nM) and activates the receptor in a reporter assay using COS-1 cells expressing mouse PPARα when used at a concentration of 100 μM.29(Z),11(E)-Conjugated linoleic acid inhibits TNF-α-inducedGLUT4expression and increases insulin-stimulated glucose transport in 3T3-L1 adipocytes.3Dietary administration of 9(Z)11(E)-conjugated linoleic acid reduces serum fasting glucose, insulin, and triglyceride levels and decreases white adipose tissue macrophage infiltration inob obmice. It also increases body weight gain and body fat in weanling mice.4[Matreya, LLC. Catalog No. 1278] 1.Shultz, T.D., Chew, B.P., Seaman, W.R., et al.Inhibitory effect of conjugated dienoic derivatives of linoleic acid and β-carotene on the in vitro growth of human cancer cellsCancer Lett.63(2)125-133(1992) 2.Moya-Camarena, S.Y., Heuvel, J.P.V., Blanchard, S.G., et al.Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARαJ. Lipid Res.40(8)1426-1433(1999) 3.Moloney, F., Toomey, S., Noone, E., et al.Antidiabetic effects of cis-9, trans-11-conjugated linoleic acid may be mediated via anti-inflammatory effects in white adipose tissueDiabetes56(3)574-582(2007) 4.Pariza, M.W., Park, Y., and Cook, M.E.The biologically active isomers of conjugated linoleic acidProg. Lipid Res.40(4)283-298(2001)