SMND-309 is a metabolite of salvianolic acid B. It also shows neuroprotective effects in cultured neurons and in permanent middle cerebral artery occlusion rats.
Fostedil is a calcium channel antagonist. KB-944 increased regional segment function in normal and ischemic regions and maintained distal coronary artery perfusion pressure, coronary flow and transmural regional myocardial blood flow during partial corona
LY 215490 is a selective, competitive and systemically active antagonist of AMPA receptor. LY 215490 has neuroprotective effect against focal ischaemia in a model of permanent MCA occlusion in the rat.
TCV-309 is an inhibitor of platelet activating factor (PAF). TCV-309 reduces graft PMN infiltration and enhances early function of 24-hour-preserved rat kidneys with long warm ischemia. TCV-309 attenuates the priming effects of bronchoalveolar macrophages
Porfimer sodium is t he sodium salt of a mixture of oligomers formed by ether and ester linkages of up to eight porphyrin units with photodynamic activity. Absorbed selectively by tumor cells, porfimer produces oxygen radicals after activation by 630 nm w
(±)14(15)-EET is a metabolite of arachidonic acid that is formed via epoxidation of arachidonic acid by cytochrome P450.[1],[2] It prevents increases in leukotriene B4, ICAM-1, and chemokine (C-C motif) ligand 1 (CCL2) induced by oxidized LDL in primary rat pulmonary artery endothelial cells (RPAECs) when used at a concentration of 1 μM.[3] (±)14(15)-EET induces dilation of preconstricted isolated canine coronary arterioles (EC50 = 0.2 pM).[4] It reduces myocardial infarct size as a percentage of the area at risk in a canine model of ischemia-reperfusion injury induced by left anterior descending coronary artery (LAD) occlusion when administered at a dose of 0.128 mg kg prior to occlusion or reperfusion.[5] Reference:[1]. Chacos, N., Falck, J.R., Wixtrom, C., et al. Novel epoxides formed during the liver cytochrome P-450 oxidation of arachidonic acid. Biochem. Biophys. Res. Commun. 104(3), 916-922 (1982).[2]. Oliw, E.H., Guengerich, F.P., and Oates, J.A. Oxygenation of arachidonic acid by hepatic monooxygenases. Isolation and metabolism of four epoxide intermediates. J. Biol. Chem. 257(7), 3771-3781 (1982).[3]. Jiang, J.-X., Zhang, S.-J., Xiong, Y.-K., et al. EETs attenuate ox-LDL-induced LTB4 production and activity by inhibiting p38 MAPK phosphorylation and 5-LO BLT1 receptor expression in rat pulmonary arterial endothelial cells. PLoS One 10(6), e0128278 (2015).[4]. Oltman, C.L., Weintraub, N.L., VanRollins, M., et al. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ. Res. 83(9), 932-939 (1998).[5]. Nithipatikom, K., Moore, J.M., Isbell, M.A., et al. Epoxyeicosatrienoic acids in cardioprotection: Ischemic versus reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 291(2), H537-H542 (2006).
Thrombin receptor peptide ligand is antagonist of the thrombin receptor (EC50s = 16-33 μM to inhibit platelet aggregation in vitro). It inhibits α-thrombin and platelet aggregation induced by thrombin receptor activating peptide in vitro when used at a concentration of 32 μM but does not affect platelet aggregation induced by ADP or collagen. It also inhibits thrombin- and TRAP-induced proliferation of vascular smooth muscle cells (VSMCs). Thrombin receptor peptide ligand (100 μmol/kg bolus, i.v., plus 900 μmol/kg infusion) inhibits arterial thrombosis in a rabbit model of partial carotid artery occlusion without increasing bleeding time.
KUS121 is a valosin-containing protein (VCP) modulator that inhibits VCP ATPase activity (IC50= 330 nM).1It inhibits cell death, ATP depletion, and upregulation of C/EBP-homologous protein (CHOP) induced by tunicamycin, an inducer of ER stress, in HeLa cells when used at concentrations of 20, 50, and 50 μM, respectively. KUS121 (100 μM) inhibits ATP depletion and cell death induced by oxygen-glucose deprivation (OGD) in rat primary cortical neurons in anin vitromodel of cerebral ischemia.2It reduces infarction volume and increases the latency to fall in an accelerating rotarod test in a mouse model of focal cerebral ischemia induced by transient distal middle cerebral artery occlusion (MCAO) when administered at a dose of 100 mg/kg immediately following occlusion and again at 50 mg/kg following reperfusion. KUS121 (50 mg/kg) inhibits thinning of the retinal outer nuclear layer and preserves visual function in an rd10 mouse model of retinitis pigmentosa.1 1.Ikeda, H.O., Sasaoka, N., Koike, M., et al.Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosaSci. Rep.45970(2014) 2.Kinoshita, H., Maki, T., Yasuda, K., et al.KUS121, a valosin-containing protein modulator, attenuates ischemic stroke via preventing ATP depletionSci. Rep.9(1)11519(2019)
Deltorphin II is a peptide agonist of δ2-opioid receptors.1,2It is selective for δ-opioid receptors over μ- and κ-opioid receptors in radioligand bindings assays (Kis = 0.0033, >1, and >1 μM, respectively) and induces [35S]GTPγS binding in mouse brain membrane preparations (EC50= 0.034 μM). Deltorphin II (0.12 mg kg) decreases the infarction zone:risk zone ratio in a rat model of myocardial ischemia-reperfusion injury induced by coronary occlusion, an effect that can be reversed by the δ2-opioid receptor antagonist naltriben but not the δ1-opioid receptor antagonist BNTX.3Intrathecal administration of deltorphin II (15 μg animal) increases latency to withdraw in the paw pressure and tail-flick tests in rats.4 1.Raynor, K., Kong, H., Chen, Y., et al.Pharmacological characterization of the cloned κ-, δ-, and μ-opioid receptorsMol. Pharm.45(2)330-334(1994) 2.Scherrer, G., Befort, K., Contet, C., et al.The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: A parallel study of mu, delta and combinatorial opioid receptor knockout miceEur. J. Neurosci.19(8)2239-2248(2004) 3.Maslov, L.N., Barzakh, E.I., Krylatov, A.V., et al.Opioid peptide deltorphin II simulates the cardioprotective effect of ischemic preconditioning: role of δ2-opioid receptors, protein kinase C, and KATP channelsBull. Exp. Biol. Med.149(5)591-593(2010) 4.Labuz, D., Toth, G., Machelska, H., et al.Antinociceptive effects of isoleucine derivatives of deltorphin I and deltorphin II in rat spinal cord: A search for selectivity of delta receptor subtypesNeuropeptides32(6)511-517(1998)
N-Methyl-D-aspartate (NMDA) receptors are Ca2+ permeable ligand-gated channels of the central nervous system that are activated after binding of the co-agonists glutamate and glycine. CAY10608 is a propanolamine that potently, selectively, and non-competitively antagonizes the NR2B subunit of NMDA receptors (IC50 = 50 nM). It does not inhibit NR1, NR2A, NR2C, and NR2D subunits and has no significant effects on α-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid (AMPA) or kainate receptors. CAY10608 is neuroprotective, since it prevents NMDA-triggered release of lactate dehydrogenase from cultured cortical neurons. Also, CAY10608, when administered intraperitoneally, reduces brain infarct volume resulting from transient ischemia via carotid artery occlusion.