H100 is a Cl- transport inhibitor, no effect against KCl cotransporter. It has partial effects against both the NaK2Cl cotransporter and the Band 3 anion exchanger.
α-Melanocyte-stimulating hormone (α-MSH) is a 13-amino acid peptide hormone produced by post-translational processing of proopiomelanocortin (POMC) in the pituitary gland, as well as in keratinocytes, astrocytes, monocytes, and gastrointestinal cells.1It is an agonist of melanocortin receptor 3 (MC3R) and MC4R that induces cAMP production in Hepa cells expressing the human receptors (EC50s = 0.16 and 56 nM, respectively).2α-MSH (100 pM) reducesS. aureuscolony formation andC. albicansgerm tube formationin vitro.3It inhibits endotoxin-, ceramide-, TNF-α-, or okadaic acid-induced activation of NF-κB in U937 cells.1α-MSH reduces IL-6- or TNF-α-induced ear edema in mice.4It also prevents the development of adjuvant-induced arthritis in rats and increases survival in a mouse model of septic shock. Increased plasma levels of α-MSH are positively correlated with delayed disease progression and reduced death in patients with HIV.1
1.Catania, A., Airaghi, L., Colombo, G., et al.α-melanocyte-stimulating hormone in normal human physiology and disease statesTrends Endocrinol. Metab.11(8)304-308(2000) 2.Miwa, H., Gantz, I., Konda, Y., et al.Structural determinants of the melanocortin peptides required for activation of melanocortin-3 and melanocortin-4 receptorsJ. Pharmacol. Exp. Ther.273(1)367-372(1995) 3.Cutuli, M., Cristiani, S., Lipton, J.M., et al.Antimicrobial effects of a-MSH peptidesJ. Leukoc. Biol.67(2)233-239(2000) 4.Lipton, J.M., Ceriani, G., Macaluso, A., et al.Antiiinflammatory effect of the neuropeptide a-MSH in acute, chronic, and systemic inflammationAnn. N.Y. Acad. Sci.25(741)137-148(1994)
SAR502250 is a potent, selective, ATP competitive, orally active and brain-penetrant inhibitor of GSK3, with an IC50 of 12 nM for human GSK-3β. SAR502250 displays antidepressant-like activity. SAR502250 can be used for the research of Alzheimer’s disease (AD)[1][2].
SAR502250 (0.01-1 μM; 36 h) attenuates the Aβ25-35-induced cell death in rat embryonic hippocampal neurons[2].
SAR502250 (1-100 mg/kg; a single p.o,) attenuates tau hyperphosphorylation in the cortex and spinal cord of transgenic mice expressing P301L tau[2].SAR502250 (10-30 mg/kg; p.o. once daily for 7 weeks) improves the cognitive deficit in transgenic APP(SW)/Tau(VLW) mice after infusion of Aβ25-35[2].SAR502250 (10-30 mg/kg; a single p.o.) significantly increases the percentage of lever-presses in the inter-response time (IRT) bin (49-96 s), with a significant augmentation of the percentage of reinforced responses[2].SAR502250 (30 mg/kg; i.p. once daily for 28 d) ameliorates chronic stress-induced degradation of the physical state of the mice coat[2].SAR502250 (10-60 mg/kg; a single p.o.) decreases hyperactivity produced by psychostimulantsin mice[2].
[1]. Fukunaga K, et, al. 2-(2-Phenylmorpholin-4-yl)pyrimidin-4(3H)-ones; a new class of potent, selective and orally active glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett. 2013 Dec 15;23(24):6933-7.[2]. Griebel G, et, al. The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer’s disease in rodents. Sci Rep. 2019 Dec 2;9(1):18045.
CC-90005 is a potent, selective and orally active inhibitor of protein kinase C-θ (PKC-θ), with an IC50 of 8 nM. CC-90005 shows selectivity for PKC-θ over PKC-δ (IC50=4440 nM). CC-90005 can inhibit T cell activation by IL-2 expression[1].
CC-90005 shows the exquisite selectivity of CC-90005, with IC50s for all other family members of >3 μM[1].CC-90005 is a moderate inhibitor of both CYP2C9 (IC50=8 μM) and CYP2C19 (IC50=5.9 μM) in human liver microsomes[1].CC-90005 inhibits IL-2 expression in LRS_WBC human PBMCs, with an IC50 of 0.15 μM[1].CC-90005 (1-10 μM; 24 h) inhibits T cell proliferation in PBMCs by 51% at 1 μM and 88% at 3 μM[1].
CC-90005 (3-30 mg/kg; p.o. twice daily for 4 days) significantly reduces the popliteal lymph node (PLN) size in a model of chronic T cell activation[1].CC-90005 (100 mg/kg; a single p.o.) significantly inhibits plasma and spleen IL-2 release by 51 and 54%, respectively[1].CC-90005 exhibits reasonable oral bioavailability (66 and 46%) and Cmax (1.18 and 1.2 μM) following oral administration (10 and 3 mg/kg) in rat and dog, respectively[1].CC-90005 exhibits the mean residence time (0.52 and 2.0 h), CL (69.1 and 20.5 mL/min/kg) and Vss (2.11 and 2.44 L/kg) following intravenous administration (2 and 1 mg/kg) in rat and dog, respectively[1].
[1]. Papa P, et, al. Discovery of the Selective Protein Kinase C-θ Kinase Inhibitor, CC-90005. J Med Chem. 2021 Aug 26;64(16):11886-11903.
PAR2 (1-6) amide is a synthetic peptide agonist of proteinase-activated receptor 2 (PAR2) that corresponds to residues 1-6 of the amino terminal tethered ligand sequence of human PAR2 and residues 37-42 of the full-length sequence.1It binds to NCTC 2544 cells expressing human PAR2 (Ki= 9.64 μM in a radioligand binding assay) and induces calcium mobilization in the same cells (EC50= 0.075 μM).2PAR2 (1-6) amide (100 μM) reduces colony formation of A549 lung cancer cells.1It induces superoxide production and degranulation in isolated human eosinophils when used at a concentration of 500 μM.3PAR2 (1-6) amide (5 μmol/kg) induces tear secretion in rats when used in combination with amastatin .4
1.Bohm, S.K., Kong, W., Bromme, D., et al.Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2Biochem. J.314(Pt 3)1009-1016(1996) 2.Kanke, T., Ishiwata, H., Kabeya, M., et al.Binding of a highly potent protease-activated receptor-2 (PAR2) activating peptide, [3H]2-furoyl-LIGRL-NH2, to human PAR2Br. J. Pharmacol.145(2)255-263(2005) 3.Miike, S., McWilliam, A.S., and Kita, H.Trypsin induces activation and inflammatory mediator release from human eosinophils through protease-activated receptor-2J. Immunol.167(11)6615-6622(2001) 4.Nishikawa, H., Kawai, K., Tanaka, M., et al.Protease-activated receptor-2 (PAR-2)-related peptides induce tear secretion in rats: Involvement of PAR-2 and non-PAR-2 mechanismsJ. Pharmacol. Exp. Ther.312(2)324-331(2005)
3-Hydroxyterphenyllin is a p-terphenyl fungal metabolite originally isolated from A. candidus that has diverse biological activities, including antioxidant, antiproliferative, antibacterial, and antiviral properties.1,2,3,4 It has a 96% scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals when used at a concentration of 100 μg/ml.2 3-Hydroxyterphenyllin inhibits the growth of HeLa cervical, A549 lung, and HepG2 liver cancer cells (IC50s = 23, 36, and 32 μM, respectively), as well as methicillin-resistant S. aureus (MRSA) and V. vulnificus bacteria (MIC = 31 μg/ml for both).3 It also inhibits HIV-1 integrase in both coupled and strand transfer assays (IC50s = 2.8 and 12.1 μM, respectively).4References1. Kurobane, I., Vining, L.C., McInnes, A.G., et al. 3-Hydroxyterphenyllin, a new metabolite of Aspergillus candidus. Structure elucidation by 1H and 13C nuclear magnetic resonance spectroscopy. J. Antibiot. (Tokyo) 32(6), 559-564 (1979).2. Yen, G.-C., Chang, Y.-C., Sheu, F., et al. Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. J. Agric. Food Chem. 49(3), 1426-1431 (2001).3. Wang, W., Liao, Y., Tang, C., et al. Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar. Drugs 15(11), E348 (2017).4. Singh, S.B., Jayasuriya, H., Dewey, R., et al. Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J. Ind. Microbiol. Biotechnol. 30(12), 721-731 (2003).
3-Hydroxyterphenyllin is a p-terphenyl fungal metabolite originally isolated from A. candidus that has diverse biological activities, including antioxidant, antiproliferative, antibacterial, and antiviral properties.1,2,3,4 It has a 96% scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals when used at a concentration of 100 μg/ml.2 3-Hydroxyterphenyllin inhibits the growth of HeLa cervical, A549 lung, and HepG2 liver cancer cells (IC50s = 23, 36, and 32 μM, respectively), as well as methicillin-resistant S. aureus (MRSA) and V. vulnificus bacteria (MIC = 31 μg/ml for both).3 It also inhibits HIV-1 integrase in both coupled and strand transfer assays (IC50s = 2.8 and 12.1 μM, respectively).4
References1. Kurobane, I., Vining, L.C., McInnes, A.G., et al. 3-Hydroxyterphenyllin, a new metabolite of Aspergillus candidus. Structure elucidation by 1H and 13C nuclear magnetic resonance spectroscopy. J. Antibiot. (Tokyo) 32(6), 559-564 (1979).2. Yen, G.-C., Chang, Y.-C., Sheu, F., et al. Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. J. Agric. Food Chem. 49(3), 1426-1431 (2001).3. Wang, W., Liao, Y., Tang, C., et al. Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar. Drugs 15(11), E348 (2017).4. Singh, S.B., Jayasuriya, H., Dewey, R., et al. Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J. Ind. Microbiol. Biotechnol. 30(12), 721-731 (2003).
Methylspinazarin is a naphthoquinone bacterial metabolite that has been found in Streptomyces and is an inhibitor of catechol O-methyltransferase (COMT; IC50 = 0.8 μg/ml).1 It is selective for COMT over tyrosine hydroxylase, DOPA decarboxylase, and dopamine-β-hydroxylase at 100 μg/ml. Methylspinazarin decreases blood pressure in spontaneously hypertensive rats when administered at a dose of 50 mg/kg.
|1. Chimura, H., Sawa, T., Takita, T., et al. Methylspinazarin and dihydromethylspinazarin, gatechol-O-methyl transerfase inhibitors produced by Streptomyces. J. Antibiot. 26(2), 112-114 (1973).
Arecaidine propargyl ester is an agonist of M2muscarinic acetylcholine receptors (mAChRs).1It selectively binds to M2over M1, M3, M4, and M5mAChRs in CHO cells expressing the human receptors (Kis = 0.0871, 1.23, 0.851, 0.977, and 0.933 μM, respectively). Arecaidine propargyl ester induces contractions in isolated guinea pig atrium (pD2= 8.67). It induces apoptosis and the production of reactive oxygen species (ROS) in U87 and U251 glioblastoma cells when used at a concentration of 100 μM.2Arecaidine propargyl ester decreases mean arterial blood pressure in normotensive cats (ED25= 1.9 nmol/kg).3It is toxic to house flies (Musca) when administered at a dose of 75 μg/fly.4
1.Scapecchi, S., Matucci, R., Bellucci, C., et al.Highly chiral muscarinic ligands: the discovery of (2S,2’R,3’S,5’R)-1-methyl-2-(2-methyl-1,3-oxathiolan-5-yl)pyrrolidine 3-sulfoxide methyl iodide, a potent, functionally selective, M2 partial agonistJ. Med. Chem.49(6)1925-1931(2006) 2.Di Bari, M., Tombolillo, B., Conte, C., et al.Cytotoxic and genotoxic effects mediated by M2 muscarinic receptor activation in human glioblastoma cellsNeurochem. Int.90261-270(2015) 3.Porsius, A.J., and Van Zwieten, P.A.Central action of some cholinergic drugs (arecaidine esters) and nicotine on blood pressure and heart rate of catsProg. Brain Res.47131-135(1977) 4.Honda, H., Tomizawa, M., and Casida, J.E.Insect muscarinic acetylcholine receptor: Pharmacological and toxicological profiles of antagonists and agonistsJ. Agric. Food Chem.55(6)2276-2281(2007)