SK-216 is a specific PAI-1 inhibitor. SK-216 reduced the extent of angiogenesis in the tumors and inhibited VEGF-induced migration and tubeformation by human umbilical vein endothelial cells in vitro. SK-216 reduced the degree of bleomycin-induced pulmon
α-Melanocyte-stimulating hormone (α-MSH) is a 13-amino acid peptide hormone produced by post-translational processing of proopiomelanocortin (POMC) in the pituitary gland, as well as in keratinocytes, astrocytes, monocytes, and gastrointestinal cells.1It is an agonist of melanocortin receptor 3 (MC3R) and MC4R that induces cAMP production in Hepa cells expressing the human receptors (EC50s = 0.16 and 56 nM, respectively).2α-MSH (100 pM) reducesS. aureuscolony formation andC. albicansgerm tubeformationin vitro.3It inhibits endotoxin-, ceramide-, TNF-α-, or okadaic acid-induced activation of NF-κB in U937 cells.1α-MSH reduces IL-6- or TNF-α-induced ear edema in mice.4It also prevents the development of adjuvant-induced arthritis in rats and increases survival in a mouse model of septic shock. Increased plasma levels of α-MSH are positively correlated with delayed disease progression and reduced death in patients with HIV.1 1.Catania, A., Airaghi, L., Colombo, G., et al.α-melanocyte-stimulating hormone in normal human physiology and disease statesTrends Endocrinol. Metab.11(8)304-308(2000) 2.Miwa, H., Gantz, I., Konda, Y., et al.Structural determinants of the melanocortin peptides required for activation of melanocortin-3 and melanocortin-4 receptorsJ. Pharmacol. Exp. Ther.273(1)367-372(1995) 3.Cutuli, M., Cristiani, S., Lipton, J.M., et al.Antimicrobial effects of a-MSH peptidesJ. Leukoc. Biol.67(2)233-239(2000) 4.Lipton, J.M., Ceriani, G., Macaluso, A., et al.Antiiinflammatory effect of the neuropeptide a-MSH in acute, chronic, and systemic inflammationAnn. N.Y. Acad. Sci.25(741)137-148(1994)
(±)10(11)-EDP ethanolamide is an ω-3 endocannabinoid epoxide and cannabinoid (CB) receptor agonist (EC50s = 0.43 and 22.5 nM for CB1 and CB2 receptors, respectively). It is produced though direct epoxygenation of docosahexaenoyl ethanolamide by cytochrome P450 (CYP) epoxygenases. 10,11-EDP epoxide (12.5 and 25 μM) reduces the viability of 143B metastatic osteosarcoma cells. It induces apoptosis and inhibits cell migration in a wound-healing assay in 143B, MG63, and HOS osteosarcoma cells. (±)10(11)-EDP ethanolamide also reduces tubeformation by human umbilical vein endothelial cells (HUVECs) in a Matrigel assay.
(±)19(20)-EDP ethanolamide is an ω-3 endocannabinoid epoxide and cannabinoid (CB) receptor agonist (EC50s = 108 and 280 nM for CB1 and CB2, respectively). It is produced through direct epoxygenation of docosahexaenoyl ethanolamide by cytochrome P450 (CYP) epoxygenases. (±)19(20)-EDP ethanolamide (25 μM) reduces the viability of 143B metastatic osteosarcoma cells. It decreases the production of IL-6 and increases the production of IL-10 when used at concentrations ranging from 2.5 to 10 μM in BV-2 microglia stimulated by LPS and decreases LPS-induced cytotoxicity when used at concentrations ranging from 5 to 10 μM. It also decreases nitrite production when used at a concentration of 7.5 μM, an effect that can be partially reversed by the CB2 receptor antagonist AM630 and the PPARγ antagonist GW 9662 . (±)19(20)-EDP ethanolamide induces vasodilation of isolated preconstricted bovine coronary arteries (ED50 = 1.9 μM) and reduces tubeformation by human microvascular endothelial cells (HMVECs) in a Matrigel assay.
Tie2 Inhibitor 7 blocks Tie2 kinase activity with a Ki value of 1.3 μM.. It has been shown to inhibit angiopoietin 1-induced Tie2 autophosphorylation and downstream signaling with an IC50 value of 0.3 μM. This compound can prevent endothelial cell tubeformation and aberrant vessel growth in a rat model of Matrigel-induced choroidal neovascularization.
Tubulin polymerization-IN-6 (compound 5f) is a potent inhibitor of tubulin polymerization, with an IC50 of 1.09 μM. It not only inhibits cell migration and tubeformation but also has anti-angiogenic properties. Additionally, Tubulin polymerization-IN-6 has been found to effectively hinder tumor growth in HT29 xenograft Balb c nude mice [1].
KRH102053 is a HIF-1alpha inhibitor. KRH102053 decreased the protein level of HIF-1alpha and the mRNA levels of HIF-regulated downstream target genes, such as vascular endothelial growth factor, aldolase A, enolase 1 and monocarboxylate transporter 4. Consistent with these results, KRH102053 also inhibited the rates of HIF-related migration and invasion of HOS cells as well as the degree of tubeformation in human umbilical vein endothelium cells.
EHT-6706 is a novel microtubule-disrupting agent that targets the colchicine-binding site to inhibit tubulin polymerization. At low nM concentrations, EHT 6706 exhibits highly potent antiproliferative activity on more than 60 human tumor cell lines, even those described as being drug resistant. EHT 6706 also shows strong efficacy as a vascular-disrupting agent, since it prevents endothelial cell tubeformation and disrupts pre-established vessels, changes the permeability of endothelial cell monolayers and inhibits endothelial cell migration. Genome-wide transcriptomic analysis of EHT 6706 effects on human endothelial cells shows that the antiangiogenic activity elicits gene deregulations of antiangiogenic pathways. These findings indicate that EHT 6706 is a promising tubulin-binding compound with potentially broad clinical antitumor efficacy.
MPT0B098 is a potent microtubule inhibitor through binding to the colchicine-binding site of tubulin. MPT0B098 is active against the growth of various human cancer cells, including chemoresistant cells with IC50 values ranging from 70 to 150 nmol L. MPT0B098 arrests cells in the G2–M phase and subsequently induces cell apoptosis. In addition, MPT0B098 effectively suppresses VEGF-induced cell migration and capillary-like tubeformation of HUVECs. Distinguished from other microtubule inhibitors, MPT0B098 not only inhibited the expression levels of HIF-1α protein but also destabilized HIF-1α mRNA. The mechanism of causing unstable of HIF-1α mRNA by MPT0B098 is through decreasing RNA-binding protein, HuR, translocation from the nucleus to the cytoplasm. Notably, MPT0B098 effectively suppresses tumor growth and microvessel density of tumor specimens in vivo. Taken together, our results provide a novel mechanism of inhibiting HIF-1α of a microtubule inhibitor MPT0B098. MPT0B098 is......
Cremastranone is a natural antiangiogenic homoisoflavanone. Cremastranone inhibits the proliferation, migration, and tubeformation ability of human retinal microvascular endothelial cells.
Coronarin, A, B, C, and D are cytotoxic prinicples from the rhizomes of Hedychium coronarium, Zingiberaceae. Coronarin A exhibits good growth inhibition activities on HUVEC proliferation, it effectively suppresses the growth factor induced tubeformation