YH16899 is a KRS-67LR interaction inhibitor by directly blocking the association between KRS and 67LR, suppressing the dynamic movement of the N-terminal extension of KRS and reducing membrane localization of KRS.
MK785 is part of the association between inhibition of aortic histamine formation, aortic albumin permeability, and atherosclerosis. Aortic histamine synthesis was inhibited by partial inhibition of aortic histidine decarboxylase (HD) by application of MK
Palmitic acid-13C is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid is a 16-carbon saturated fatty acid. It comprises approximately 25% of human total plasma lipids.1 It increases protein levels of COX-2 in RAW 264.7 cells when used at a concentration of 75 μM.2 Palmitic acid is involved in the acylation of proteins to anchor membrane-bound proteins to the lipid bilayer.2,3,4,5,6 |1. Santos, M.J., López-Jurado, M., Llopis, J., et al. Influence of dietary supplementation with fish oil on plasma fatty acid composition in coronary heart disease patients. Ann. Nutr. Metab. 39(1), 52-62 (1995).|2. Lee, J.Y., Sohn, K.H., Rhee, S.H., et al. Saturated fatty acids, but not unsaturated fatty acids, induced the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J. Biol. Chem. 276(20), 16683-16689 (2001).|3. Dietzen, D.J., Hastings, W.R., and Lublin, D.M. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem. 270(12), 6838-6842 (1995).|4. Robinson, L.J., and Michel, T. Mutagenesis of palmitoylation sites in endothelial nitric oxide synthase identifies a novel motif for dual acylation and subcellular targeting. Proc. Nat. Acad. Sci. USA 92(25), 11776-11780 (1995).|5. Topinka, J.R., and Bredt, D.S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron 20(1), 125-134 (1998).|6. Miggin, S.M., Lawler, O.A., and Kinsella, B.T. Palmitoylation of the human prostacyclin receptor. Functional implications of palmitoylation and isoprenylation. J. Biol. Chem. 278(9), 6947-6958 (2003).
Palmitic acid-13C is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid-13C contains 13C at the C2 position and has been used in the study of free fatty acid incorporation into phospholipid fatty acids in soil microbes.1 Palmitic acid is a 16-carbon saturated fatty acid. It comprises approximately 25% of human total plasma lipids.2 It increases protein levels of COX-2 in RAW 264.7 cells when used at a concentration of 75 μM.3 Palmitic acid is involved in the acylation of proteins to anchor membrane-bound proteins to the lipid bilayer.3,4,5,6,7
DEPMPO is a nitrone that is used to spin trap reactive O-, N-, S-, and C-centered radicals and allow their characterization when used in association with electron spin resonance. It is noted for the stability of adducts formed. DEPMPO can be used in vitro or in vivo, as it crosses lipid bilayer membranes and is a good trapping agent in biological systems. DEPMPO-biotin is a biotinylated form of DEPMPO which retains the outstanding persistency of its adducts. The biotin moiety offers an effective means for monitoring biodistribution in cells, tissues, and organs when used with an avidin-conjugated reporter. Importantly, DEPMPO-biotin binds free radicals, such as S-nitroso groups, on proteins, producing adducts that can be analyzed via the biotin tag. This direct labeling of S-nitrosothiols (SNO) thus serves as an effective alternative to the more cumbersome biotin-switch method for monitoring SNO formation.
Bile acids are essential for solubilization and transport of dietary lipids, are the major products of cholesterol catabolism, and are physiological ligands for farnesoid X receptor (FXR), a nuclear receptor that regulates genes involved in lipid metabolism.1They are also inherently cytotoxic, as physiological imbalance contributes to increased oxidative stress.2,3Bile acid-controlled signaling pathways are promising novel targets to treat such metabolic diseases as obesity, type II diabetes, hyperlipidemia, and atherosclerosis.Guggulsterone, derived from resin of the guggul tree, is a competitive antagonist of FXR bothin vitroandin vivo.4Thecisstereoisomer of guggulsterone, (E)-guggulsterone, decreases chenodeoxycholic acid (CDCA)-induced FXR activation with an IC50value of 15 μM.5,6By inhibiting CDCA-induced transactivation of FXR, guggulsterone lowers low-density lipoprotein cholesterol and triglyceride levels in rodents fed a high cholesterol diet.4 1.Makishima, M., Okamoto, A.Y., Repa, J.J., et al.Identification of a nuclear receptor for bile acidsScience2841362-1365(1999) 2.Barbier, O., Torra, I.P., Sirvent, A., et al.FXR induces the UGT2B4 enzyme in hepatocytes: A potential mechanism of negative feedback control of FXR activityGastroenterology1241926-1940(2003) 3.Tan, K.P., Yang, M., and Ito, S.Activation of nuclear factor (erythroid-2 like) factor 2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stressMol. Pharmacol.72(5)1380-1390(2007) 4.Urizar, N.L., Liverman, A.B., Dodds, D.T., et al.A natural product that lowers cholesterol as an anatagonist ligand for FXRScience296(5573)1703-1706(2002) 5.Cui, J., Huang, L., Zhao, A., et al.Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pumpThe Journal of Biological Chemisty278(12)10214-10220(2003) 6.Wu, J., Xia, C., Meier, J., et al.The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptorMolecular Endocrinology16(7)1590-1597(2002)
RWJ-56110 dihydrochloride is a potent, selective, peptide-mimetic inhibitor of PAR-1 activation and internalization (binding IC50=0.44 uM) and shows no effect on PAR-2, PAR-3, or PAR-4. RWJ-56110 dihydrochloride inhibits the aggregation of human platelets induced by both SFLLRN-NH2 (IC50=0.16 μM) and thrombin (IC50=0.34 μM), quite selective relative to U46619 . RWJ-56110 dihydrochloride blocks angiogenesis and blocks the formation of new vessels in vivo. RWJ-56110 dihydrochloride induces cell apoptosis[1][2]. Proteinase-activated receptors (PARs) are a family of G protein-coupled receptors activated by the proteolytic cleavage of their N-terminal extracellular domain, exposing a new amino terminal sequence that functions as a tethered ligand to activate the receptors.RWJ56110 inhibits the aggregation of human platelets induced by both SFLLRN-NH2 (IC50=0.16 μM) and thrombin (IC50=0.34 μM) while being quite selective relative to collagen and the thromboxane mimetic U46619 [1].RWJ-56110 dihydrochloride is fully inhibits thrombin-induced RASMC proliferation with an IC50 value of 3.5 μM. RWJ-56110 dihydrochloride shows blockade of thrombin's action with RASMC calcium mobilization (IC50=0.12 μM), as well as with HMVEC (IC50=0.13 μM) and HASMC calcium mobilization (IC50=0.17 μM)[1].RWJ56110 (0.1-10 μM; 24-96 hours) inhibits endothelial cell growth dose-dependently, with half-maximal inhibitory concentration of RWJ56110 is approximately 10 μM[2].RWJ56110 (0.1-10 μM; 6 hours) inhibits DNA synthesis of endothelial cells in a thymidine incorporation assays. Endothelial cells are in fast-growing state (50-60% confluence), RWJ56110 inhibits cell DNA synthesis in a dose-dependent manner, but when cells that are in the quiescent state (100% confluent), the inhibitory effect of PAR-1 antagonists is much less pronounced[2].RWJ56110 (0.1-10 μM; pretreatment for 15 min) inhibits thrombin-induced Erk1 2 activation in a concentration-dependent manner. However, when endothelial cells are stimulated by FBS (final concentration 4%), it reduces partially the activated levels of Erk1 2[2].RWJ56110 (30 μM; 24 hours) has an inhibitory effect on endothelial cell cycle progression. It reduces the percentage of cells in the S phase, while alterations in the percentages of G1 and G2 M cells are less pronounced[2]. Western Blot Analysis[2] Cell Line: Endothelial cells [1]. Andrade-Gordon, et al.Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. oc Natl Acad Sci U S A. 1999 Oct 26;96(22):12257-62. [2]. Panagiota Zania, et al. Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: association with endothelial cell growth suppression and induction of apoptosis. J Pharmacol Exp Ther. 2006 Jul;318(1):246-54.
CR-1-31-B, a synthetic rocaglate, acts as a highly potent inhibitor of eIF4A. By disrupting the interaction between eIF4A and RNA, it effectively obstructs the initiation phase of protein synthesis. Specifically, CR-1-31-B interferes with the association between Plasmodium falciparum eIF4A (PfeIF4A) and RNA. Additionally, CR-1-31-B induces apoptosis in neuroblastoma and gallbladder cancer cells [4].