Erythromycin 2'-propionate is a macrolide antibiotic and an esterified form of erythromycin .1It is active againstS. aureuswhen used at a concentration of 1 μg/ml. Erythromycin 2'-propionate (1 mM) inhibits protein synthesis in a cell-free assay. 1.Tardrew, P.L., Mao, J.C.H., and Kenney, D.Antibacterial activity of 2'-esters of erythromycinAppl. Microbiol.18(2)159-165(1969)
PROTAC BRD4 Degrader-8 is a potent BRD4 inhibitor, with IC50s of 1.1 nM and 1.4 nM for BRD4 BD1 and BD2, respectively. PROTAC BRD4 Degrader-8 is capable of potently degrading the BRD4 proteinin PC3 prostate cancer cells[1]. PROTAC BRD4 Degrader-8 (compound 8; 6 days) inhibits the proliferation of PC3 prostate cancer cells, with an IC50 of 28 nM[1].PROTAC BRD4 Degrader-8 (4 h) suppresses MYC gene transcript in MV4-11 AML cells, with an IC50 of 11 nM[1].PROTAC BRD4 Degrader-8 (4 h) potently degrades the BRD4 proteinin PC3 prostate cancer cells, with an DC50 of 7.5 nM[1]. [1]. Dragovich PS, et, al. Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy. J Med Chem. 2021 Mar 11;64(5):2576-2607.
Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1 2 by MEK1 2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0 G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013). Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1 2 by MEK1 2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0 G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3 References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013).
BRD4 Inhibitor-15 (compound 13) is a highly potent and specific inhibitor of BRD4, effectively inhibiting it with an IC50 of 18 nM. By regulating the Bcl-2 Bax proteins and activating the caspase-3 signaling pathway, BRD4 Inhibitor-15 induces apoptosis of 22RV1 cells. Additionally, it effectively down-regulates the c-Myc level in 22RV1 cells. Due to its properties, BRD4 Inhibitor-15 is a valuable compound for research related to prostate cancer [1].
MRK003 is a γ-secretase inhibitor exhibits promising in vitro pre-clinical activity in multiple myeloma and non-Hodgkin's lymphoma. MRK003 treatment induced caspase-dependent apoptosis and inhibited proliferation of MM and NHL cell lines and patient cells. Examination of signaling events after treatment showed time-dependent decrease in levels of the notch intracellular domain, Hes1 and c-Myc. MRK003 downregulated cyclin D1, Bcl-Xl and Xiap levels in NHL cells and p21, Bcl-2 and Bcl-Xl in MM cells. In addition, MRK003 caused an upregulation of pAkt, indicating crosstalk with the PI3K Akt pathway.