22393-62-0_peak 2 exhibits some aspects of the antiestrogenic activity and other actions that may be connected to the estrogenic properties. A mixtureof the (Z)- and (E)-isomers (Broparestrol, INN) is used in dermatology.
Methyl mycophenolate can be used to synthesize mycophenolic acid β-D-glucuronide and phenolic glycosides. (E Z)-Methyl mycophenolate is a racemic compound of (Z)-Methyl mycophenolate and (E)-Methyl mycophenolate isomers. Methyl mycophenolate is a methyl e
Dexibuprofen (S-ibuprofen) is a non-steroidal anti-inflammatory drug. Most ibuprofen preparations contain a racemic mixtureof two isomers. Dexibuprofen as a cyclooxygenase inhibitor.
Fimaporfin, also known as TPCS2a, is a potent chlorin-based photosensitizer, Fimaporfin is consisted of a mixtureof three isomers A, B and C (25%,50%,25%). Fimaporfin has been developed by di-imide reduction of disulfonated tetraphenyl porphine (TPPS(2a)
(±)10-HDHA is an autoxidation product of docosahexaenoic acid (DHA) in vitro.[1][2] It is also produced from incubations of DHA in rat liver, brain, and intestinal microsomes.[3][4][5] (±)10-HDHA is a potential marker of oxidative stress in brain and retina where DHA is an abundant polyunsaturated fatty acid. Reference:[1]. VanRollins, M., and Murphy, R.C. Autooxidation of docosahexaenoic acid: Analysis of ten isomersof hydroxydocosahexaenoate. J. Lipid Res. 25(5), 507-517 (1984).[2]. Reynaud, D., Thickitt, C.P., and Pace-Asciak, C.R. Facile preparation and structural determination of monohydroxy derivatives of docosahexaenoic acid (HDoHE) by α-tocopherol-directed autoxidation. Anal. Biochem. 214(1), 165-170 (1993).[3]. VanRollins, M., Baker, R.C., Sprecher, H., et al. Oxidation of docosahexaenoic acid by rat liver microsomes. J. Biol. Chem. 259(9), 5776-5783 (1984).[4]. Yamane, M., Abe, A., and Yamane, S. High-performance liquid chromatography-thermospray mass spectrometry of epoxy polyunsaturated fatty acids and epoxyhydroxy polyunsaturated fatty acids from an incubation mixtureof rat tissue homogenate. J. Chromatogr. 652(2), 123-136 (1994).[5]. Kim, H.Y., Karanian, J.W., Shingu, T., et al. Sterochemical analysis of hydroxylated docosahexaenoates produced by human platelets and rat brain homogenate. Prostaglandins 40(5), 473-490 (1990).
D-myo-Inositol-1,4,5,6-tetrahosphate (sodium salt) (Ins(1,4,5,6)-P4) is one of several different inositol oligophosphate isomers implicated in signal transduction. Production of Ins(1,4,5,6)-P4 by intestinal epithelial cells increases approximately 2-14 fold, depending on the strain and incubation time, following infection with Salmonella.[1] D-myo-Inositol-1,4,5,6-tetraphosphate (sodium salt) (Ins(1,4,5,6)-P4) is one of several different inositol oligophosphate isomers implicated in signal transduction. Production of Ins(1,4,5,6)-P4 by intestinal epithelial cells increases approximately 2-14 fold, depending on the strain and incubation time, following infection with Salmonella. Ins(1,4,5,6)-P4 antagonizes epidermal growth factor (EGF) signalling through the phosphatidylinositol 3-kinase pathway. Ins(1,4,5,6)-P4 (tested as the D L racemic mixture) is ~1,000-fold less potent than Ins(1,4,5)-P3 at initiating Ca2+ release when injected into Xenopus oocytes.[2]
Nitrated unsaturated fatty acids, such as 10- and 12-nitrolinoleate , cholesteryl nitrolinoleate, and nitrohydroxylinoleate, represent a new class of endogenous lipid-derived signalling molecules. LNO2 isomers serve as potent endogenous ligands for PPARγ and can also decompose or be metabolized to release nitric oxide. 9-Nitrooleate is one of two regioisomersof nitrooleate, the other being 10-nitrooleate (OA-NO2; used for the mixtureofisomers), which are formed by nitration of oleic acid in approximately equal proportions in vivo. Peroxynitrite, acidified nitrite, and myeloperoxidase in the presence of H2O2 and nitrite, all mediate the nitration of oleic acid. OA-NO2 is found in human plasma as the free acid and esterified in phospholipids at concentrations of 619 ± 52 nM and 302 ± 369 nM, respectively. OA-NO2 activates PPARγ approximately 7-fold at a concentration of 1 μM and effectively promotes differentiation 3T3-L1 preadipocytes to adipocytes at 3 μM.
Ins(1,2)P2 (sodium salt) is one of the many inositol phosphate (InsP) isomers that could act as small, soluble second messengers in the transmission of cellular signals. The most studied InsP Ins(1,4,5)P3, is a second messenger produced in cells by phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositol-4,5-biphosphate. Binding of Ins(1,4,5)P3 to its receptor on the endoplasmic reticulum results in opening of the calcium channels and an increase in intracellular calcium. Ins(1,2)P2 (tested as the D L racemic mixture) is ~1,000-fold less potent than Ins(1,4,5)P3 at initiating Ca2+ release when injected into Xenopus oocytes.
Tunicamycin 14:1 is a mixtureof tunicamycin structural isomers that contain a 14-carbon N-acyl chain with variable branching patterns. The N-acyl chain incorporated into tunicamycins, like tunicamycin 14:1, is derived from the same pool of cellular branched-chain fatty acids (BCFAs) in Streptomyces and directly impacts the biological activity of each individual tunicamycin variant.1,2,3Purified tunicamycin 14:1 with the iso branching configuration inhibits bacterial phospho-MurNAc-pentapeptide transferase (MraY) with an IC50 value of 0.31 μM.2
Tunicamycin 15:1 is a mixtureof tunicamycin structural isomers that contain a 15-carbon N-acyl chain with variable branching patterns. The N-acyl chain incorporated into tunicamycins, like tunicamycin 15:1, is derived from the same pool of cellular branched-chain fatty acids (BCFAs) inStreptomycesand directly impacts the biological activity of each individual tunicamycin variant.1,2,3Purified tunicamycin 15:1 withiso,anteiso, or a mixtureofisoandanteisobranching configurations inhibit bacterial phospho-MurNAc-pentapeptide transferase (MraY) with IC50values of 0.05, 0.36, and 0.09 μM, respectively.2 1.Price, N.P.J., Jackson, M.A., Hartman, T.M., et al.Branched chain lipid metabolism as a determinant of the N-Acyl variation of Streptomyces natural productsACS Chem. Biol.16(1)116-124(2021) 2.Hering, J., Dunevall, E., Snijder, A., et al.Exploring the active site of the antibacterial target MraY by modified tunicamycinsACS Chem Biol.15(11)2885-2895(2020) 3.Duksin, D., and Mahoney, W.C.Relationship of the structure and biological activity of the natural homologues of tunicamycinJ. Biol. Chem.257(6)3105-3109(1982)