L-NIO dihydrochloride induces a consistentfocal ischemic infarctin rats. L-NIO dihydrochloride is a potent, non-selective and NADPH-dependent nitric oxide synthase (NOS) inhibitor, with Kis of 1.7, 3.9, 3.9 μM for neuronal (nNOS), endothelial (eNOS), and inducible (iNOS), respectively.
(±)14(15)-EET is a metabolite of arachidonic acid that is formed via epoxidation of arachidonic acid by cytochrome P450.[1],[2] It prevents increases in leukotriene B4, ICAM-1, and chemokine (C-C motif) ligand 1 (CCL2) induced by oxidized LDL in primary rat pulmonary artery endothelial cells (RPAECs) when used at a concentration of 1 μM.[3] (±)14(15)-EET induces dilation of preconstricted isolated canine coronary arterioles (EC50 = 0.2 pM).[4] It reduces myocardial infarct size as a percentage of the area at risk in a canine model of ischemia-reperfusion injury induced by left anterior descending coronary artery (LAD) occlusion when administered at a dose of 0.128 mg kg prior to occlusion or reperfusion.[5] Reference:[1]. Chacos, N., Falck, J.R., Wixtrom, C., et al. Novel epoxides formed during the liver cytochrome P-450 oxidation of arachidonic acid. Biochem. Biophys. Res. Commun. 104(3), 916-922 (1982).[2]. Oliw, E.H., Guengerich, F.P., and Oates, J.A. Oxygenation of arachidonic acid by hepatic monooxygenases. Isolation and metabolism of four epoxide intermediates. J. Biol. Chem. 257(7), 3771-3781 (1982).[3]. Jiang, J.-X., Zhang, S.-J., Xiong, Y.-K., et al. EETs attenuate ox-LDL-induced LTB4 production and activity by inhibiting p38 MAPK phosphorylation and 5-LO BLT1 receptor expression in rat pulmonary arterial endothelial cells. PLoS One 10(6), e0128278 (2015).[4]. Oltman, C.L., Weintraub, N.L., VanRollins, M., et al. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ. Res. 83(9), 932-939 (1998).[5]. Nithipatikom, K., Moore, J.M., Isbell, M.A., et al. Epoxyeicosatrienoic acids in cardioprotection: Ischemic versus reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 291(2), H537-H542 (2006).
N-Methyl-D-aspartate (NMDA) receptors are Ca2+ permeable ligand-gated channels of the central nervous system that are activated after binding of the co-agonists glutamate and glycine. CAY10608 is a propanolamine that potently, selectively, and non-competitively antagonizes the NR2B subunit of NMDA receptors (IC50 = 50 nM). It does not inhibit NR1, NR2A, NR2C, and NR2D subunits and has no significant effects on α-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid (AMPA) or kainate receptors. CAY10608 is neuroprotective, since it prevents NMDA-triggered release of lactate dehydrogenase from cultured cortical neurons. Also, CAY10608, when administered intraperitoneally, reduces brain infarct volume resulting from transient ischemia via carotid artery occlusion.
Moexipril-d5 intended for use as an internal standard for the quantification of moexipril by GC- or LC-MS. Moexipril is a prodrug form of the angiotensin converting enzyme (ACE) inhibitor moexiprilat. It is converted to moexiprilat in vivo by side chain ester hydrolysis. Moexipril inhibits ACE in a cell-free assay (IC50 = 2.7 µM for the rabbit enzyme). It also inhibits phosphodiesterase 4 (IC50s = 38, 160, and 230 µM for PDE4B2, PDE4A5 and PDE4D5, respectively). Moexipril (0.1-30 mg kg per day) reduces blood pressure in spontaneously hypertensive rats.1 It also reduces infarct volume in a rat model of focal cerebral ischemia when used at a concentration of 0.01 mg kg.
Nicorandil-d4 is intended for use as an internal standard for the quantification of nicorandil by GC- or LC-MS. Nicorandil is an activator of sulfonylurea receptor 2B (SUR2B) linked to ATP-sensitive potassium channel Kir6.2 (EC50 = ~10 µM) and a nitric oxide (NO) donor. It is selective for SUR2B Kir6.2 over the SUR2A Kir6.2 channel (EC50 = >500 µM). Nicorandil activates soluble guanylate cyclase in a cell-free assay and relaxes partially depolarized isolated bovine coronary artery strips (EC50 = 4.4 µM). It decreases mean blood pressure, coronary resistance, and heart rate, as well as increases coronary sinus outflow, in dogs when administered intravenously at a dose of 1 mg kg. Nicorandil increases survival and decreases infarct size in a rabbit model of myocardial ischemia-reperfusion injury induced by left coronary artery occlusion. Formulations containing nicorandil have been used in the treatment of angina pectoris.