CM-414 is a dual inhibitor of HDACs and PDE5 for the Treatment of Alzheimer’s Disease (IC50 values of 60 nM, 310 nM, 490 nM, 322 nM, and 91 nM against PDE5, HDAC1, HDAC2, HDAC3, and HDAC6, respectively). Chronic treatment of Tg2576 mice with CM-414 dimini
SAR502250 is a potent, selective, ATP competitive, orally active and brain-penetrant inhibitor of GSK3, with an IC50 of 12 nM for human GSK-3β. SAR502250 displays antidepressant-like activity. SAR502250 can be used for the research of Alzheimer’s disease (AD)[1][2]. SAR502250 (0.01-1 μM; 36 h) attenuates the Aβ25-35-induced cell death in rat embryonic hippocampalneurons[2]. SAR502250 (1-100 mg kg; a single p.o,) attenuates tau hyperphosphorylation in the cortex and spinal cord of transgenic mice expressing P301L tau[2].SAR502250 (10-30 mg kg; p.o. once daily for 7 weeks) improves the cognitive deficit in transgenic APP(SW) Tau(VLW) mice after infusion of Aβ25-35[2].SAR502250 (10-30 mg kg; a single p.o.) significantly increases the percentage of lever-presses in the inter-response time (IRT) bin (49-96 s), with a significant augmentation of the percentage of reinforced responses[2].SAR502250 (30 mg kg; i.p. once daily for 28 d) ameliorates chronic stress-induced degradation of the physical state of the mice coat[2].SAR502250 (10-60 mg kg; a single p.o.) decreases hyperactivity produced by psychostimulantsin mice[2]. [1]. Fukunaga K, et, al. 2-(2-Phenylmorpholin-4-yl)pyrimidin-4(3H)-ones; a new class of potent, selective and orally active glycogen synthase kinase-3β inhibitors. Bioorg Med Chem Lett. 2013 Dec 15;23(24):6933-7.[2]. Griebel G, et, al. The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer’s disease in rodents. Sci Rep. 2019 Dec 2;9(1):18045.
Alaproclate is a selective serotonin reuptake inhibitor (SSRI).1,2 It inhibits depletion of serotonin (5-HT) induced by 4-methyl-α-ethyl-m-tyramine in rat cerebral cortex, hippocampus, hypothalamus, and striatum (EC50s = 18, 4, 8, and 12 mg kg, respectively).1 Alaproclate inhibits NMDA-evoked currents and depolarization-induced voltage-dependent potassium currents in rat hippocampalneurons (IC50s = 1.1 and 6.9 μM, respectively) and does not inhibit GABA-evoked currents when used at concentrations up to 100 μM.2 It increases sirtuin 1 (SIRT1) levels in N2a murine neuroblastoma cells expressing apolipoprotein E4 (ApoE4; IC50 = 2.3 μM) and in the hippocampus in the FXFAD-ApoE4 transgenic mouse model of Alzheimer's disease when administered at a dose of 20 mg kg twice daily.3 Alaproclate (40 mg kg) decreases immobility time in the forced swim test in rats, indicating antidepressant-like activity.4References1. Michael, G.B., Eidam, C., Kadlec, K., et al. Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm(42) and msr(E)-mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. Journal of Antimicrobial Chemotherapy 67(6), 1555-1557 (2012).2. Svensson, B.E., Werkman, T.R., and Rogawski, M.A. Alaproclate effects on voltage-dependent K+ channels and NMDA receptors: Studies in cultured rat hippocampalneurons and fibroblast cells transformed with Kv1.2 K+ channel cDNA. Neuropharmacology 33(6), 795-804 (1994).3. Campagna, J., Soilman, P., Jagodzinska, B., et al. A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer's disease mouse model. Sci. Rep. 8(1), 17574 (2018).4. Danysz, W.P., A., Kostowski, W., Malatynska, E., et al. Comparison of desipramine, amitriptyline, zimeldine and alaproclate in six animal models used to investigate antidepressant drugs. Pharmacol. Toxicol. 62(1), 42-50 (1988). Alaproclate is a selective serotonin reuptake inhibitor (SSRI).1,2 It inhibits depletion of serotonin (5-HT) induced by 4-methyl-α-ethyl-m-tyramine in rat cerebral cortex, hippocampus, hypothalamus, and striatum (EC50s = 18, 4, 8, and 12 mg kg, respectively).1 Alaproclate inhibits NMDA-evoked currents and depolarization-induced voltage-dependent potassium currents in rat hippocampalneurons (IC50s = 1.1 and 6.9 μM, respectively) and does not inhibit GABA-evoked currents when used at concentrations up to 100 μM.2 It increases sirtuin 1 (SIRT1) levels in N2a murine neuroblastoma cells expressing apolipoprotein E4 (ApoE4; IC50 = 2.3 μM) and in the hippocampus in the FXFAD-ApoE4 transgenic mouse model of Alzheimer's disease when administered at a dose of 20 mg kg twice daily.3 Alaproclate (40 mg kg) decreases immobility time in the forced swim test in rats, indicating antidepressant-like activity.4 References1. Michael, G.B., Eidam, C., Kadlec, K., et al. Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm(42) and msr(E)-mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. Journal of Antimicrobial Chemotherapy 67(6), 1555-1557 (2012).2. Svensson, B.E., Werkman, T.R., and Rogawski, M.A. Alaproclate effects on voltage-dependent K+ channels and NMDA receptors: Studies in cultured rat hippocampalneurons and fibroblast cells transformed with Kv1.2 K+ channel cDNA. Neuropharmacology 33(6), 795-804 (1994).3. Campagna, J., Soilman, P., Jagodzinska, B., et al. A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer's disease mouse model. Sci. Rep. 8(1), 17574 (2018).4. Danysz, W.P., A., Kostowski, W., Malatynska, E., et al. Comparison of desipramine, amitriptyline, zimeldine and alaproclate in six animal models used to investigate antidepressant drugs. Pharmacol. Toxicol. 62(1), 42-50 (1988).
Negative control for st-Ht31 . Gorshkov et al (2017) AKAP-mediated feedback control of cAMP gradients in developing hippocampalneurons. Nat.Chem.Biol. 13 425 PMID:28192412 |Vijayaraghavan et al (1997) Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J.Biol.Chem. 272 4747 PMID:9030527 |Vincent et al (2017) Signaling: Spatial regulation of axonal cAMP. Nat.Chem.Biol. 13 348 PMID:28328917
Photoswitchable Kv channel blocker (IC50 values are 2 and 64 μM at 500 nm and 380 nm respectively). Switches conformation from cis to trans at 500 nm and trans to cis at 380 nm. Exhibits minimal activity at Nav1.2 and L-type Ca2+ channels. Stimulates action potential firing of hippocampalneurons in vitro at 500 nm and restores visual responsiveness in blind mice at 380 nm. Fortin et al (2008) Photochemical control of endogenous ion channels and cellular excitability. Nat.Methods 5 331 PMID:18311146 |Polosukhina et al (2012) Photochemical restoration of visual responses in blind mice. Neuron 75 271 PMID:22841312 |Banghart et al (2009) Photochromic blockers of voltage-gated potassium channels. Angew.Chem.Int.Ed. 48 9097 PMID:19882609
8-hydroxy Efavirenz is a major oxidative metabolite of the non-nucleoside reverse transcriptase inhibitor efavirenz . 8-hydroxy Efavirenz is formed when efavirenz is metabolized by the cytochrome P450 (CYP) isoform CYP2B6. It induces apoptosis in rat primary hippocampalneurons and loss of dendritic spines in rat primary hippocampal neuronal cultures when used at a concentration of 0.01 μM.
Afizagabar (S44819) is a first-in-class, competitive, and selective antagonist at the GABA-binding site of the α5-GABAAR, with an IC50 of 585 nM for α5β2γ2 and a Ki of 66 nM for α5β3γ2. Afizagabar enhances hippocampal synaptic plasticity and exhibits pro-cognitive efficacy[1]. Afizagabar (S44819) is a competitive α5-GABAAR antagonist (Kb=221 nM). Afizagabar selectively inhibits extrasynaptic α5-GABAARs of mouse CA1 pyramidal neurons[1]. Afizagabar (1 and 3 mg kg; i.p.) significantly diminishes the marked increase in total errors induced by Scopolamine[1]. [1]. Etherington LA, et al. Selective inhibition of extra-synaptic α5-GABAA receptors by S44819, a new therapeutic agent. Neuropharmacology. 2017;125:353-364.
GAT229 is a positive allosteric modulator of cannabinoid receptor 1 (CB1) and the S-(-) enantiomer of the CB1 modulator GAT211. It does not activate the receptor on its own but enhances the binding and activity of CB agonists. GAT229 (1 μM) enhances the binding of the CB1 full agonist CP 55,940 to CHO cells expressing human recombinant CB1 (hCB1), as well as the activity of 2-arachidonoyl glycerol , arachidonoyl ethanolamide , and CP 55,940 in arrestin2 recruitment assays and increases ERK1 2 and PLCβ3 phosphorylation in HEK293 cells expressing hCB1. GAT229 (1 μM) enhances depolarization-induced suppression of excitation but does not inhibit excitatory postsynaptic currents (EPSCs) in murine autaptic hippocampalneurons. GAT229 (0.2%, topical) reduces intraocular pressure by 5.8 and 7.7 mm Hg after 6 and 12 hours, respectively, in a transgenic mouse model of ocular hypertension using nose, ear, eye mutation (nee) mice.
Prostaglandin D2 ethanolamide (PGD2-EA) is a bioactive lipid produced by the sequential metabolism of anandamide (arachidonoyl ethanolamide) by cyclooxygenase (COX) enzymes, in particular by COX-2, and PGD synthase. The biosynthesis of PGD2-EA from anandamide can also be increased when anandamide metabolism is diminished by deletion of fatty acid amide hydrolase. PGD2-EA is inactive against recombinant prostanoid receptors, including the D prostanoid receptor. It increases the frequency of miniature inhibitory postsynaptic currents in primary cultured hippocampalneurons, an effect which is the opposite of that induced by anandamide.. PGD2-EA also induces apoptosis in colorectal carcinoma cell lines.
GYKI 52466 is an allosteric AMPA receptor antagonist. It selectively inhibits AMPA-induced inward currents (IC50 = 7.5 µM) over NMDA- or GABA-induced inward currents in primary rat hippocampalneurons at 50 µM but also inhibits kainate-induced inward currents in the same cells (IC50 = 11 µM).2 GYKI 52466 (10 µM) reduces the amplitude of spontaneous excitatory postsynaptic currents (EPSCs) in the same cells. It increases the latency to seizure onset and reduces mortality in a rat model of generalized tonic-clonic seizures induced by 4-aminopyridine (4-AP) when administered at doses of 25 and 50 mg kg. GYKI 52466 (30 mg kg) prevents neuronal damage in the CA1 region of the hippocampus in a rat model of global ischemia-reperfusion injury induced by four-vessel occlusion.
Pirlindole-d4 is intended for use as an internal standard for the quantification of pirlindole by GC- or LC-MS. Pirlindole is a selective and reversible monoamine oxidase A (MAO-A) inhibitor. It is selective for MAO-A over MAO-B. In rats, it reverses the depressive-like effects induced by chronic mild stress (CMS), increases proliferation of hippocampal neural progenitor cells, and reverses dendritic atrophy in granule neurons. Pirlindole is also an inhibitor of enterovirus-D68 and coxsackievirus B3 (CV-B3), inhibiting the genome replication phase of CV-B3 infection with an EC50 value of 7.7 µM independent of MAO-A activity.