LP-184 (Compound 6), referred to as an acylfulvene analog, demonstrates the ability to inhibit tumor growth with noteworthy anti-cancer efficacy observed across multiple cell lines, including ovarian, colon, prostate, and pancreatic.
Aspulvinone O is a fungal metabolite that has been found in P. variotti and has antioxidant and anticancer activities.1,2 It scavenges 2,2-diphenyl-1-picrylhydrazyl radicals in a cell-free assay (IC50 = 11.6 μM).1 Aspulvinone O inhibits aspartate transaminase 1 (GOT1; Kd = 3.32 μM) and is cytotoxic to PANC-1, AsPC-1, and SW1990 pancreatic cancer cells (IC50s = 20.54-26.8 μM).2 It reduces the oxygen consumption rate (OCR) and induces apoptosis in SW1990 cells. Aspulvinone O (2.5 and 5 mg/kg) reduces tumor growth in an SW1990 mouse xenograft model.
|1. Zhang, P., Li, X.-M., Wang, J.-N., et al. New butenolide derivatives from the marine-derived fungus Paecilomyces variotii with DPPH radical scavenging activity. Phytochem. Lett. 11, 85-88 (2015).|2. Sun, W., Luan, S., Qi, C., et al. Aspulvinone O, a natural inhibitor of GOT1 suppresses pancreatic ductal adenocarcinoma cells growth by interfering glutamine metabolism. Cell Commun. Signal. 17(1), 111 (2019).
Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1/2 by MEK1/2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0/G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg/kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013).
Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1/2 by MEK1/2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0/G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg/kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3
References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013).
GM 1489 is a broad-spectrum inhibitor of matrix metalloproteinases (MMPs) with Ki values of 0.002, 0.1, 0.5, 0.2, and 20 μM for MMP-1, MMP-8, MMP-2, MMP-9, and MMP-3, respectively. It reduces 5-aza-2'-deoxycytidine-induced increases in MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, and MMP-14 expression as well as cell invasion in AsPC-1, BxPC-3, Hs766T, MiaPaCa2, and PANC-1 cancer cells. Topical administration of GM 1489 (100 μg) inhibits increases in ear thickness and epidermal hyperplasia induced by phorbol 12-myristate 13-acetate and phorbol dibutyrate (PdiBu) in mice.