Decyclopropane, also known as HG-7-85-01, is a chemical compound with ABL inhibitor properties. It binds to the IAP ligand through a linker, resulting in the formation of SNIPER [1].
Cortistatin-29 is a neuropeptide that is structurally similar to somatostatin-28. It is produced by cleavage of preprocortistatin to procortistatin, which is cleaved at dibasic amino acids to form cortistatin-29 and cortistatin-14 as well as other partial cleavage products. Cortistatin mRNA is expressed in the human brain and in interneurons of the rat hippocampus and cerebral cortex. Cortistatin-29 binds to somatostatin (SST) receptors with IC50 values of 2.8, 7.1, 0.2, 3, and 13.7 nM for SST1-5, respectively. Cortistatin-29 is found at similar levels as cortistatin-14 in mouse AtT20 cells but is secreted at a lower level. Cortistatin-29 corresponds to residues 85-112 of the rat peptide sequence.
para-amino-Blebbistatin is a more water-soluble form of (S)-4'-nitro-blebbistatin , which is a more stable and less phototoxic form of (-)-blebbistatin .1,2,3 (-)-Blebbistatin is a selective cell-permeable inhibitor of non-muscle myosin II ATPases that rapidly and reversibly inhibits Mg-ATPase activity and in vitro motility of non-muscle myosin IIA and IIB for several species (IC50s = 0.5-5 μM), while poorly inhibiting smooth muscle myosin (IC50 = 80 μM).2,3,4 Through these effects, it blocks apoptosis-related bleb formation, directed cell migration, and cytokinesis in vertebrate cells. However, prolonged exposure to blue light (450-490 nm) results in degradation of blebbistatin to an inactive product via cytotoxic intermediates, which may be problematic for its use in fluorescent live cell imaging applications.5,6 The addition of a 4'-amino group increases its water solubility, decreases the inherent fluorescence, stabilizes the molecule to circumvent its degradation by prolonged blue light exposure, and decreases its phototoxicity while retaining the in vitro and in vivo activity of blebbistatin.7 para-amino-Blebbistatin has the same stereochemistry as the active (-)-blebbistatin enantiomer. |1. Várkuti, B.H., Képiró, M., Horváth, I.á., et al. A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci. Rep. 6:26141, (2016).|2. Straight, A.F., Cheung, A., Limouze, J., et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299(5613), 1743-1747 (2003).|3. Kovács, M., Tóth, J., Hetényi, C., et al. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279(34), 35557-35563 (2004).|4. Limouze, J., Straight, A.F., Mitchison, T., et al. Specificity of blebbistatin, an inhibitor of myosin II. J. Muscle Res. Cell Motil. 25(4-5), 337-341 (2004).|5. Kolega, J. Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochem. Biophys. Res. Commun. 320(3), 1020-1025 (2004).|6. Sakamoto, T., Limouze, J., Combs, C.A., et al. Blebbistatin, a myosin II inhibitor, is photoinactivated by blue light. Biochemistry 44(2), 584-588 (2005).|7. Verhasselt, S., Roman, B.I., Bracke, M.E., et al. Improved synthesis and comparative analysis of the tool properties of new and existing D-ring modified (S)-blebbistatin analogs. Eur. J. Med. Chem. 136, 85-103 (2017).
Ganglioside GM1is a monosialylated ganglioside and the prototypic ganglioside for those containing one sialic acid residue.1,2It is found in a large variety of cells, including immune cells and neurons, and is enriched in lipid rafts in the cell membrane.3It associates with growth factor receptors, including TrkA, TrkB, and the GDNF receptor complex containing Ret and GFRα, and is required for TrkA expression on the cell surface. Ganglioside GM1interacts with other proteins to increase calcium influx, affecting various calcium-dependent processes, including inducing neuronal outgrowth during differentiation. Ganglioside GM1acts as a receptor for cholera toxin, which binds to its oligosaccharide group, facilitating toxin cell entry into epithelial cells of the jejunum.4,5Similarly, it is bound by the heat-labile enterotoxin fromE. coliin the pathogenesis of traveler's diarrhea.6Ganglioside GM1gangliosidosis, characterized by a deficiency in GM1-β-galactosidase, the enzyme that degrades ganglioside GM1, leads to accumulation of the gangliosides GM1and GA1in neurons and can be fatal in infants.1Levels of ganglioside GM1are decreased in the substantia nigra pars compacta in postmortem brain from patients with Parkinson's disease.3Ganglioside GM1mixture contains a mixture of ovine ganglioside GM1molecular species with primarily C18:0 fatty acyl chain lengths, among various others. [Matreya, LLC. Catalog No. 1544] 1.Kolter, T.Ganglioside biochemistryISRN Biochem.506160(2012) 2.Mocchetti, I.Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophinsCell Mol. Life Sci.62(19-20)2283-2294(2005) 3.Ledeen, R.W., and Wu, G.The multi-tasked life of GM1 ganglioside, a true factotum of natureTrends Biochem. Sci.40(7)407-418(2015) 4.Turnbull, W.B., Precious, B.L., and Homans, S.W.Dissecting the cholera toxin-ganglioside GM1 interaction by isothermal titration calorimetryJ. Am. Chem. Soc.126(4)1047-1054(2004) 5.Blank, N., Schiller, M., Krienke, S., et al.Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1Immunol. Cell Biol.85(5)378-382(2007) 6.Minke, W.E., Roach, C., Hol, W.G., et al.Structure-based exploration of the ganglioside GM1 binding sites of Escherichia coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonistsBiochemistry38(18)5684-5692(1999)
Potent inhibitor of NF-κB activation (IC50 = 85 nM); decreases IκBα phosphorylation. Attenuates LPS-induced nitric oxide production and expression of TNF-α, IL-6 and MCP. Suppresses proliferation of HeLa and HCT116 cells. Anti-inflammatory and antitumor. Hu et al (2007) Regulation of c-Src nonreceptor tyrosine kinase activity by bengamide A through inhibition of methionine aminopeptidases. Chem.Biol. 14 764 PMID:17656313 |Johnson et al (2012) Myxobacteria versus sponge-derived alkaloids: the bengamide family identified as potent immune modulating agents by scrutiny of LC-MS ELSD libraries. Bioorg.Med.Chem. 20 4348 PMID:22705020 |Kinder et al (2001) Synthesis and antitumor activity of ester-modified analogues of bengamide B. J.Med.Chem. 44 3692 PMID:11606134
Potent trace amine 1 (TA1) receptor agonist (EC50 values are 0.12, 35 and 17-85 nM for mouse, rat and human receptors, respectively). Increases wakefulness and reduces REM and NREM sleep duration in wild type mice. Inhibits spontaneous locomotor activity in dopamine transport (DAT) knockout mice. Espinoza et al (2018) Biochemical and functional characterization of the trace amine-associated receptor 1 (TAAR1) agonist RO5263397. Front.Pharmacol. 9 645 PMID:29977204 |Galley et al (2015) Discovery and characterization of 2-aminooxazolines as highly potent, selective, and orally active TAAR1 agonists. ACS.Med.Chem.Letts. 7 192 PMID:26985297 |Schwartz et al (2017) Trace amine-associated receptor 1 regulates wakefulness and EEG spectral composition. Neuropsychopharmacology. 42 1305 PMID:27658486
MDK03855, also known as A2AR antagonist 19, is an adenosine A2A receptor (A2AR) antagonist. MDK03855 has CAS#1454903-85-5. The last five digit of CAS# was used for name.