MBD, a novel fluorescent probe (7-(p-Methoxybenzylamino)-4-nitrobenz-2,1,3-oxadiazole), is utilized to study the conformation of protein and nucleoprotein. Its application is extended to bacterial ribosomes, as well as bovine trypsinogen and trypsin. MBD exhibits significant fluorescence when it binds to the hydrophobic region of macromolecules [1][2].
Enteropeptidase fluorogenic substrate is a substrate for enteropeptidase that contains a 7-amino-4-trifluoromethylcoumarin (AFC) moiety. Enteropeptidase is a serine protease expressed in the proximal small intestine of higher animals that converts inactive trypsinogen to active trypsin by endoproteolytic cleavage. Enteropeptidase recognizes the highly specific amino acid sequence DDDDK on the fluorogenic substrate and cleaves after the lysine residue, releasing the AFC moiety. Enteropeptidase activity is quantified by fluorescent detection of AFC, which displays excitation emission spectra of 380 500 nm.
Enteropeptidase fluorogenic substrate is a substrate for enteropeptidase that contains a 7-amino-4-trifluoromethylcoumarin (AFC) moiety. Enteropeptidase is a serine protease expressed in the proximal small intestine of higher animals that converts inactive trypsinogen to active trypsin by endoproteolytic cleavage.1,2Enteropeptidase recognizes the highly specific amino acid sequence DDDDK on the fluorogenic substrate and cleaves after the lysine residue, releasing the AFC moiety. Enteropeptidase activity is quantified by fluorescent detection of AFC, which displays excitation/emission spectra of 380/500 nm.3