Potent rat Nav1.7, human Nav1.4 and rat Nav1.6 channel activator (EC50 values are 7, 10 and 47 nM, respectively). Exhibits minimal activation at mammalian Nav1.2, Nav1.3 and Nav1.5 (EC50 values >3 μM). Inhibits fast inactivation on all channels. Increases
Lu AE98134, an activator of voltage-gated sodium channels, acts as a partly selective Nav1.1 channels positive modulator. Lu AE98134 also increases the activity of Nav1.2 and Nav1.5 channels but not of Nav1.4, Nav1.6 and Nav1.7 channels. Lu AE98134 can be used to analyze pathophysiological functions of the Nav1.1 channel in various central nervous system diseases, including cognitive restoring in schizophrenia, et al[1].
F 15845 is a blocker of the persistent sodium current prevents consequences of hypoxia in rat femoral artery. F15845 has been shown to selectively inhibit the persistent sodium current of Nav1.5[1] exerting cardioprotective effects following ischemia. In vitro testing showed minimal effects of F15845 on other important ion channels of the heart, including major Ca2+ and K+ channels.[1] This characteristic is thought to account for the limited effect of F15845 to change other heart parameters such as basal cardiac function, hemodynamic functions and ventricular fibrillation. F15845 was also shown to exert improved effects when the membrane potential was depolarized,[1] by acting on the extracellular side of the channel.
GS-462808 is a late sodium current inhibitor of the cardiac Nav1.5 channel. GS-462808 had lower brain penetration and serendipitously lower activity at the brain isoforms.