Piroheptine HCl is an agent of anticholinergic that acts by inhibiting dopamine uptake and completely preventing loss of striatal dopamine in MPTP-treated mice.
LY503430 is a AMPA receptor potentiator with oral activity. LY503430 has both nootropic and neuroprotective effects, reducing brain damage caused by 6-hydroxydopamine or MPTP.
ML 23 is a melatonin analogue in the treatment and management of Parkinson's disease. ML-23 is a potential clinical candidate for the treatment of PD, and the present study has been undertaken to determine the efficacy of ML-23 in the 1-methyl-4-phenyl, 1
AMK is an active metabolite of the neurohormone melatonin .1,2,3,4It is formed from melatoninviathe metabolic intermediate AFMK that is then deformylated by catalase or formamidase.5,6AMK scavenges singlet oxygenin vitrowhen used at a concentration of 200 μM.1It inhibits the epinephrine- and arachidonic acid-induced production of prostaglandin E2and PGD2in ovine seminal vesicle microsomes in a concentration- and time-dependent manner, as well as LPS-induced increases in COX-2 levels in RAW 264.7 macrophages when used at a concentration of 500 μM.2,3AMK (20 mg kg) decreases MPTP-induced increases in lipid peroxidation in the cytosol and mitochondria from substantia nigra and striatum in a mouse model of MPTP-induced Parkinson’s disease.4 1.Schaefer, M., and Hardeland, R.The melatonin metabolite N1-acetyl-5-methoxykynuramine is a potent singlet oxygen scavengerJ. Pineal Res.46(1)49-52(2009) 2.Kelly, R.W., Amato, F., and Seamark, R.F.N-acetyl-5-methoxy kynurenamine, a brain metabolite of melatonin, is a potent inhibitor of prostaglandin biosynthesisBiochem. Biophys. Res. Commun.121(1)372-379(1984) 3.Mayo, J.C., Sainz, R.M., Tan, D.-X., et al.Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophagesJ. Neuroimmunol.165(1-2)139-149(2005) 4.Tapias, V., Escames, G., López, L.C., et al.Melatonin and its brain metabolite N1-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian miceJ. Neurosci. Res.87(13)3002-3010(2009) 5.Tan, D.-X., Manchester, L.C., Reiter, R.J., et al.Melatonin directly scavenges hydrogen peroxide: A potentially new metabolic pathway of melatonin biotransformationFree Radic. Biol. Med.29(11)1177-1185(2000) 6.Hirata, F., Hayaishi, O., Tokuyama, T., et al.In vitro and in vivo formation of two new metabolites of melatoninJ. Biol. Chem.249(4)1311-1313(1974)
Ru360, an oxygen-bridged dinuclear ruthenium amine complex, is a selective mitochondrial calcium uptake inhibitor. Ru360 potently inhibits Ca2+ uptake into mitochondria with an IC50 of 0.184 nM. Ru360 binds to mitochondria with high affinity (Kd of 0.34 nM). Ru360 has antiarrhythmic and cardioprotective effects[1][2]. Ru360 permeates slowly into the cell, and specifically inhibits mitochondrial calcium uptake in intact cardiomyocytes and in isolated heart. 1 μm Ru360 is taken up by myocardial cells and accumulated in the cytosol in a biphasic manner[1]. During pelleting hypoxia, Ru360 (10 µM) significantly improves cell viability in wild type cardiomyocytes[3]. Ru360 (15-50 nmol/kg) treatment abolishes the incidence of arrhythmias and haemodynamic dysfunction elicited by reperfusion in a whole rat model. Ru360 administration partially inhibits calcium uptake, preventing mitochondria from depolarization by the opening of the mitochondrial permeability transition pore (mPTP)[1]. [1]. G de J García-Rivas, et al. Ru360, a Specific Mitochondrial Calcium Uptake Inhibitor, Improves Cardiac Post-Ischaemic Functional Recovery in Rats in Vivo. Br J Pharmacol. 2006 Dec;149(7):829-37. [2]. M A Matlib, et al. Oxygen-bridged Dinuclear Ruthenium Amine Complex Specifically Inhibits Ca2+ Uptake Into Mitochondria in Vitro and in Situ in Single Cardiac Myocytes. J Biol Chem. 1998 Apr 24;273(17):10223-31. [3]. Lukas J Motloch, et al. UCP2 Modulates Cardioprotective Effects of Ru360 in Isolated Cardiomyocytes During Ischemia. Pharmaceuticals (Basel). 2015 Aug 4;8(3):474-82.
Zonisamide-13C2,15N is intended for use as an internal standard for the quantification of zonisamide by GC- or LC-MS. Zonisamide is an antiepileptic agent.1 It selectively inhibits the repeated firing of sodium channels (IC50 = 2 μg ml) in mouse embryo spinal cord neurons and inhibits spontaneous channel firing when used at concentrations greater than 10 μg ml.2 In rat cerebral cortex neurons, zonisamide (1-1,000 μM) inhibits T-type calcium channels with a maximum reduction of 60% of the calcium current.3 Zonisamide inhibits H. pylori recombinant carbonic anhydrase (CA) and the human CA isoforms I, II, and V with Ki values of 218, 56, 35, and 21 nM, respectively.4,5 In mice, it has anticonvulsant activity against maximal electroshock seizure (MES) and pentylenetetrazole-induced maximal, but not minimal, seizures (ED50s = 19.6, 9.3, and >500 mg kg, respectively). Zonisamide (40 mg kg, p.o.) prevents MPTP-induced decreases in the levels of dopamine , but not homovanillic acid or dihydroxyphenyl acetic acid , and increases MPTP-induced decreases in the dopamine turnover rate in mouse striatum in a model of Parkinson's disease.6 Formulations containing zonisamide have been used in the treatment of partial seizures in adults with epilepsy. |1. Masuda, Y., Ishizaki, M., and Shimizu, M. Zonisamide: Pharmacology and clinical efficacy in epilepsy. CNS Drug Rev. 4(4), 341-360 (1998).|2. Rock, D.M., Macdonald, R.L., and Taylor, C.P. Blockade of sustained repetitive action potentials in cultured spinal cord neurons by zonisamide (AD 810, CI 912), a novel anticonvulsant. Epilepsy Res. 3(2), 138-143 (1989).|3. Suzuki, S., Kawakami, K., Nishimura, S., et al. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res. 12(1), 21-27 (1992).|4. Nishimori, I., Vullo, D., Minakuchi, T., et al. Carbonic anhydrase inhibitors: Cloning and sulfonamide inhibition studies of a carboxyterminal truncated α-carbonic anhydrase from Helicobacter pylori. Bioorg. Med. Chem. Lett. 16(8), 2182-2188 (2006).|5. De Simone, G., Di Fiore, A., Menchise, V., et al. Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: Solution and X-ray crystallographic studies. Bioorg. Med. Chem. Lett. 15(9), 2315-2320 (2005).|6. Yabe, H., Choudhury, M.E., Kubo, M., et al. Zonisamide increases dopamine turnover in the striatum of mice and common marmosets treated with MPTP. J. Pharmacol. Sci. 110(1), 64-68 (2009).
PAQ is a neuroprotective agent. It protects dopaminergic neurons from cell death without inhibiting glial cell proliferation in a rat midbrain culture model of Parkinson's disease when used at a concentration of 10 μM. PAQ (25 or 50 mg/kg, twice per day) prevents loss of dopaminergic neurons in the substantia nigra in a mouse model of Parkinson's disease induced by MPTP.