Aspergillimide is a fungal metabolite originally isolated from A. japonicus.1 It reduces nicotinic acetylcholine receptor (nAChR) peak and slowly-desensitizing amplitudes induced by acetylcholine in silkworm (B. mori) larval neurons (IC50s = 20.2 and 39.6 nM, respectively) but has no effect on chicken α3β4-, α4β2-, and α7-containing nAChRs.2 Dietary administration of aspergillimide A (10 μg/g of diet) induces paralysis in silkworm fourth instar larvae.1 Aspergillimide A (10 and 20 mg/kg) reduces T. colubriformis fecal egg count in gerbils.3References1. Hayashi, H., Nishimoto, Y., Akiyama, K., et al. New paralytic alkaloids, asperparalines A, B and C, from Aspergillus japonicus JV-23. Biosci. Biotechnol. Biochem. 64(1), 111-115 (2000).2. Hirata, K., Kataoka, S., Furutani, S., et al. A fungal metabolite asperparaline a strongly and selectively blocks insect nicotinic acetylcholine receptors: The first report on the mode of action. PLoS One 6(4), e18354 (2011).3. Banks, R.M., Blanchflower, S.E., Everett, J.R., et al. Novel anthelmintic metabolites from an Aspergillus species; the aspergillimides. J. Antibiot. (Tokyo) 50(10), 840-846 (1997). Aspergillimide is a fungal metabolite originally isolated from A. japonicus.1 It reduces nicotinic acetylcholine receptor (nAChR) peak and slowly-desensitizing amplitudes induced by acetylcholine in silkworm (B. mori) larval neurons (IC50s = 20.2 and 39.6 nM, respectively) but has no effect on chicken α3β4-, α4β2-, and α7-containing nAChRs.2 Dietary administration of aspergillimide A (10 μg/g of diet) induces paralysis in silkworm fourth instar larvae.1 Aspergillimide A (10 and 20 mg/kg) reduces T. colubriformis fecal egg count in gerbils.3 References1. Hayashi, H., Nishimoto, Y., Akiyama, K., et al. New paralytic alkaloids, asperparalines A, B and C, from Aspergillus japonicus JV-23. Biosci. Biotechnol. Biochem. 64(1), 111-115 (2000).2. Hirata, K., Kataoka, S., Furutani, S., et al. A fungal metabolite asperparaline a strongly and selectively blocks insect nicotinic acetylcholine receptors: The first report on the mode of action. PLoS One 6(4), e18354 (2011).3. Banks, R.M., Blanchflower, S.E., Everett, J.R., et al. Novel anthelmintic metabolites from an Aspergillus species; the aspergillimides. J. Antibiot. (Tokyo) 50(10), 840-846 (1997).
Brain-derived acidic fibroblast growth factor (102-111) is a peptide fragment of brain-derived acidic fibroblast growth factor (aFGF). aFGF is an angiogenic vascular endothelial cell mitogen produced in bovine brain that has sequence homology to interleukin-1. It also shares sequence homology with the known neuropeptides neuromedin C , bombesin , neuromedin K , substance K , substance P , physalaemin, and eledoisin. aFGF (102-111) corresponds to amino acid residues 102-111 of the fulllength peptide.
Antibacterial agent 111 (Compound 3) exhibits potent antibacterial activity against B. cereus and K. pneumonia, with MIC values of 3.90 μg mL and 0.49 μg mL, respectively. It achieves this antibacterial effect by strongly binding to specific residues of tyrosyl-tRNA synthetase [1].