Glucagon is a 29-amino-acid peptide hormone liberated in the alpha cells of the islets of Langerhans. Glucagon-producing alpha cells represent one of the earliest populations of detectable islet cells in the developing endocrine pancreas.
Glucagon-like peptide 1 (1-37), human (TFA), is a highly potent agonist of the GLP-1 receptor and is a pancreatic hormone synthesized through post-translational processing of proglucagon.
Glucagon-like peptide 1 (1-37), human, is a highly potent agonist of the GLP-1 receptor and a pancreatic hormone synthesized through post-translational processing of proglucagon. Unlike truncated forms of GLP-1, it has no effect on food intake in rats.
Glucagon-like peptide 2 (GLP-2) is a recently identified intestinal epithelium-specific growth factor that has been shown to reduce the severity of inflammatory disorders of the intestine in rodent models. Currently Glucagon-Like Peptide 2 is used as a po
Skyrin is a fungal metabolite characterized by a bisanthraquinone structure. It interferes with glucagon signaling through adenylate cyclase without binding to the glucagon receptor. At 10 μM, skyrin reduces both glucagon-stimulated cAMP production and glycogenolysis. It does not interfere with epinephrine or glucagon-like peptide 1 effects on these parameters.[1] Reference:[1]. Parker, J.C., McPherson, R.K., Andrews, K.M., et al. Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes. Diabetes 49, 2079-2086 (2012).
GLP-1 amide is a peptide hormone cleaved from proglucagon in the pancreas.1,2 Mice lacking the glucagon receptor (Gcgr- -) have approximately nine-fold higher levels of total GLP-1 amide, including GLP-1 (1-36) amide and truncated GLP-1 (7-36) amide , in pancreatic tissue compared to wild-type mice.2References1. Schjoldager, B.T., Mortensen, P.E., Christiansen, J., et al. GLP-1 (glucagon-like peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in humans. Dig. Dis. Sci. 34(5), 703-708 (1989).2. Gelling, R.W., Du, X.Q., Dichmann, D.S., et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 100(3), 1438-1443 (2003). GLP-1 amide is a peptide hormone cleaved from proglucagon in the pancreas.1,2 Mice lacking the glucagon receptor (Gcgr- -) have approximately nine-fold higher levels of total GLP-1 amide, including GLP-1 (1-36) amide and truncated GLP-1 (7-36) amide , in pancreatic tissue compared to wild-type mice.2 References1. Schjoldager, B.T., Mortensen, P.E., Christiansen, J., et al. GLP-1 (glucagon-like peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in humans. Dig. Dis. Sci. 34(5), 703-708 (1989).2. Gelling, R.W., Du, X.Q., Dichmann, D.S., et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 100(3), 1438-1443 (2003).
Pituitary adenylate cyclase-activating peptide (PACAP) (6-27) is a PACAP receptor antagonist with IC50 values of 1,500, 600, and 300 nM, respectively, for rat PAC1, rat VPAC1, and human VPAC2 recombinant receptors expressed in CHO cells. It binds to PACAP receptors on SH-SY5Y and SK-N-MC human neuroblastoma and T47D human breast cancer cells (IC50s = 24.5, 106, and 105 nM, respectively) and inhibits cAMP accumulation induced by PACAP (1-38) (Kis = 457, 102, and 283 nM, respectively, in SH-SY5Y, SK-N-MC, and T47D cells). In vivo, in newborn pigs, PACAP (6-27) (10 μM) inhibits vasodilation of pial arterioles induced by PACAP (1-27) and PACAP (1-38) . It also inhibits PACAP (1-27)-stimulated increases in plasma insulin and glucagon levels and pancreatic venous blood flow in dogs when administered locally to the pancreas at a dose of 500 μg.