103D5R is a novel selective inhibitor of hif-1α, markedly decreasing hif-1α protein levels induced by hypoxia or cobaltous ions in a dose- and time-dependent manner
Neuromedin U-23 (NMU-23) is a neuropeptide involved in diverse biological processes, including smooth muscle contraction, energy homeostasis, and nociception.1It is an agonist of neuromedin-U receptor 1 (NMUR1; EC50= 0.17 nM for the human receptor in a calcium mobilization assay using HEK293 cells) and NMUR2 (EC50= ~1.4-2 nM for arachidonic acid release in CHO cells expressing the human receptor).2,3NMU-23 (1 μM) induces contractions in isolated rat colon smooth muscle strips.4It decreases body weight and food intake and increases core body temperature in mice when administered at a dose of 36 μg/animal.5Intrathecal administration of NMU-23 decreases the mechanical pain threshold in the von Frey test in rats.6 1.Mitchell, J.D., Maguire, J.J., and Davenport, A.P.Emerging pharmacology and physiology of neuromedin U and the structurally related peptide neuromedin SBr. J. Pharmacol.158(1)87-103(2009) 2.Szekeres, P.G., Muir, A.I., Spinage, L.D., et al.Neuromedin U is a potent agonist at the orphan G protein-coupled receptor FM3J. Biol. Chem.275(27)20247-20250(2000) 3.Hosoya, M., Moriya, T., Kawamata, Y., et al.Identification and functional characterization of a novel subtype of neuromedin U receptorJ. Biol. Chem.275(38)29528-29532(2000) 4.Brighton, P.J., Wise, A., Dass, N.B., et al.Paradoxical behavior of neuromedin U in isolated smooth muscle cells and intact tissueJ. Pharmacol. Exp. Ther.325(1)154-164(2008) 5.Peier, A., Kosinski, J., Cox-York, K., et al.The antiobesity effects of centrally administered neuromedin U and neuromedin S are mediated predominantly by the neuromedin U receptor 2 (NMUR2)Endocrinology150(7)3101-3109(2009) 6.Yu, X.H., Cao, C.Q., Mennicken, F., et al.Pro-nociceptive effects of neuromedin U in ratNeuroscience120(2)467-474(2003)
para-amino-Blebbistatin is a more water-soluble form of (S)-4'-nitro-blebbistatin , which is a more stable and less phototoxic form of (-)-blebbistatin .1,2,3 (-)-Blebbistatin is a selective cell-permeable inhibitor of non-muscle myosin II ATPases that rapidly and reversibly inhibits Mg-ATPase activity and in vitro motility of non-muscle myosin IIA and IIB for several species (IC50s = 0.5-5 μM), while poorly inhibiting smooth muscle myosin (IC50 = 80 μM).2,3,4 Through these effects, it blocks apoptosis-related bleb formation, directed cell migration, and cytokinesis in vertebrate cells. However, prolonged exposure to blue light (450-490 nm) results in degradation of blebbistatin to an inactive product via cytotoxic intermediates, which may be problematic for its use in fluorescent live cell imaging applications.5,6 The addition of a 4'-amino group increases its water solubility, decreases the inherent fluorescence, stabilizes the molecule to circumvent its degradation by prolonged blue light exposure, and decreases its phototoxicity while retaining the in vitro and in vivo activity of blebbistatin.7 para-amino-Blebbistatin has the same stereochemistry as the active (-)-blebbistatin enantiomer. |1. Várkuti, B.H., Képiró, M., Horváth, I.á., et al. A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci. Rep. 6:26141, (2016).|2. Straight, A.F., Cheung, A., Limouze, J., et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299(5613), 1743-1747 (2003).|3. Kovács, M., Tóth, J., Hetényi, C., et al. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279(34), 35557-35563 (2004).|4. Limouze, J., Straight, A.F., Mitchison, T., et al. Specificity of blebbistatin, an inhibitor of myosin II. J. Muscle Res. Cell Motil. 25(4-5), 337-341 (2004).|5. Kolega, J. Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochem. Biophys. Res. Commun. 320(3), 1020-1025 (2004).|6. Sakamoto, T., Limouze, J., Combs, C.A., et al. Blebbistatin, a myosin II inhibitor, is photoinactivated by blue light. Biochemistry 44(2), 584-588 (2005).|7. Verhasselt, S., Roman, B.I., Bracke, M.E., et al. Improved synthesis and comparative analysis of the tool properties of new and existing D-ring modified (S)-blebbistatin analogs. Eur. J. Med. Chem. 136, 85-103 (2017).
TAS-103 is a dual inhibitor of DNA topoisomerase I II, used for cancer research. TAS-103 is a dual inhibitor of DNA topoisomerase I II. TAS-103 (0.1-10 μM) is active on CCRF-CEM cells, with an IC50 value of 5 nM. TAS-103 (0.1 μM) significantly increases levels of topo IIα FITC immunofluorescence in individual CCRF-CEM cells[1]. TAS-103 (0.01-1 μM) is highly cytotoxic to Lewis lung carcinoma (LLC) cells, and Liposomal TAS-103 is almost as active as free TAS-103[2]. TAS-103 inhibits the viability of HeLa cells, with an IC50 of 40 nM. TAS-103 (10 μM) disrupts signal recognition particle (SRP) complex formation, and induces destabilization of SRP14 and SRP19 and its eventual degradation[3]. TAS-103 (30 mg kg, i.v.) causes significant tumor growth suppression in mice bearing Lewis lung carcinoma (LLC) cells, without obvious body weight loss, and the liposomal TAS-103 is more active than free TAS-103[2]. [1]. Padget K, et al. An investigation into the formation of N- [2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA) and 6-[2-(dimethylamino)ethylamino]- 3-hydroxy-7H-indeno[2, 1-C]quinolin-7-one dihydrochloride (TAS-103) stabilised DNA topoisomerase I and II cleavable complexes in human leukaemia cells. Biochem Pharmacol. 2000 Sep 15;60(6):817-21. [2]. Shimizu K, et al. Cancer chemotherapy by liposomal 6-[12-(dimethylamino)ethyl]aminol-3-hydroxy-7H-indeno[2,1-clquinolin-7-one dihydrochloride (TAS-103), a novel anti-cancer agent. Biol Pharm Bull. 2002 Oct;25(10):1385-7. [3]. Yoshida M, et al. A new mechanism of 6-((2-(dimethylamino)ethyl)amino)-3-hydroxy-7H-indeno(2,1-c)quinolin-7-one dihydrochloride (TAS-103) action discovered by target screening with drug-immobilized affinity beads. Mol Pharmacol. 2008 Mar;73(3):987-94. Epub 2007 Dec 18.
C16 Sphingosine-1-phosphate (C16 S1P) is a derivative of sphingosine-1-phosphate that binds to S1P1/EDG-1, S1P3/EDG-3, and S1P2/EDG-5 receptors with affinities of 115%, 83%, and 103%, respectively, relative to S1P in CHO cells. C16 S1P was increased in postmortem primary open angle glaucoma trabecular meshwork samples.