Equisetin, an N-methylserine-derived acyl tetramic acid isolated from the terrestrial fungus Fusarium equiseti NRRL 5537, functions as a Quorum-sensing inhibitor (QSI) that specifically attenuates QS-regulated virulence phenotypes in P. aeruginosa, presenting a potent lead for treating P. aeruginosa infections without hindering bacterial growth. This tetramate-containing natural product possesses antibiotic and cytotoxic properties, effectively inhibiting the growth of Gram-positive bacteria and HIV-1 integrase activity, yet it does not impact Gram-negative bacteria.
SM111 inhibits in vitro replication of HIV-1, including strains resistant to reverse transcriptase, licensed protease, and integraseinhibitors, without major cellular toxicity.
3-Hydroxyterphenyllin is a p-terphenyl fungal metabolite originally isolated from A. candidus that has diverse biological activities, including antioxidant, antiproliferative, antibacterial, and antiviral properties.1,2,3,4 It has a 96% scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals when used at a concentration of 100 μg/ml.2 3-Hydroxyterphenyllininhibits the growth of HeLa cervical, A549 lung, and HepG2 liver cancer cells (IC50s = 23, 36, and 32 μM, respectively), as well as methicillin-resistant S. aureus (MRSA) and V. vulnificus bacteria (MIC = 31 μg/ml for both).3 It also inhibits HIV-1 integrasein both coupled and strand transfer assays (IC50s = 2.8 and 12.1 μM, respectively).4References1. Kurobane, I., Vining, L.C., McInnes, A.G., et al. 3-Hydroxyterphenyllin, a new metabolite of Aspergillus candidus. Structure elucidation by 1H and 13C nuclear magnetic resonance spectroscopy. J. Antibiot. (Tokyo) 32(6), 559-564 (1979).2. Yen, G.-C., Chang, Y.-C., Sheu, F., et al. Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. J. Agric. Food Chem. 49(3), 1426-1431 (2001).3. Wang, W., Liao, Y., Tang, C., et al. Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar. Drugs 15(11), E348 (2017).4. Singh, S.B., Jayasuriya, H., Dewey, R., et al. Isolation, structure, and HIV-1-integraseinhibitory activity of structurally diverse fungal metabolites. J. Ind. Microbiol. Biotechnol. 30(12), 721-731 (2003). 3-Hydroxyterphenyllin is a p-terphenyl fungal metabolite originally isolated from A. candidus that has diverse biological activities, including antioxidant, antiproliferative, antibacterial, and antiviral properties.1,2,3,4 It has a 96% scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals when used at a concentration of 100 μg/ml.2 3-Hydroxyterphenyllininhibits the growth of HeLa cervical, A549 lung, and HepG2 liver cancer cells (IC50s = 23, 36, and 32 μM, respectively), as well as methicillin-resistant S. aureus (MRSA) and V. vulnificus bacteria (MIC = 31 μg/ml for both).3 It also inhibits HIV-1 integrasein both coupled and strand transfer assays (IC50s = 2.8 and 12.1 μM, respectively).4 References1. Kurobane, I., Vining, L.C., McInnes, A.G., et al. 3-Hydroxyterphenyllin, a new metabolite of Aspergillus candidus. Structure elucidation by 1H and 13C nuclear magnetic resonance spectroscopy. J. Antibiot. (Tokyo) 32(6), 559-564 (1979).2. Yen, G.-C., Chang, Y.-C., Sheu, F., et al. Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. J. Agric. Food Chem. 49(3), 1426-1431 (2001).3. Wang, W., Liao, Y., Tang, C., et al. Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar. Drugs 15(11), E348 (2017).4. Singh, S.B., Jayasuriya, H., Dewey, R., et al. Isolation, structure, and HIV-1-integraseinhibitory activity of structurally diverse fungal metabolites. J. Ind. Microbiol. Biotechnol. 30(12), 721-731 (2003).
Dolutegravir O-β-D-glucuronide is a metabolite of the HIV integraseinhibitor dolutegravir .1It is formed from dolutegravir primarily by the UDP-glucuronosyltransferase (UGT) isoform UGT1A1in vivobut is also metabolized by UGT1A9 in human liver and kidney microsomes and UGT1A3 in human intestinal microsomes.2,1 1.Liu, S.N., Lu, J.B., Watson, C.J.W., et al.Mechanistic assessment of extrahepatic contributions to glucuronidation of integrase strand transfer inhibitorsDrug Metab. Dispos.47(5)535-544(2019) 2.Reese, M.J., Savina, P.M., Generaux, G.T., et al.In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integraseinhibitorDrug Metab. Dispos.41(2)353-361(2013)