Palmitic acid-13C (C1, C2, C3, and C4 labeled) is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid is a common 16-carbon saturated fat that represents 10-20% of human dietary fat intake and comprises approximately 25 and 65% of human total plasma lipids and saturated fatty acids, respectively.1,2Acylation of palmitic acid to proteins facilitates anchoring of membrane-bound proteins to the lipid bilayer and trafficking of intracellular proteins, promotes protein-vesicle interactions, and regulates various G protein-coupledreceptor functions.1Red blood cell palmitic acid levels are increased in patients with metabolic syndrome compared to patients without metabolic syndrome and are also increased in the plasma of patients with type 2 diabetes compared to individuals without diabetes.3,4 1.Fatima, S., Hu, X., Gong, R.-H., et al.Palmitic acid is an intracellular signaling molecule involved in disease developmentCell. Mol. Life Sci.76(13)2547-2557(2019) 2.Santos, M.J., López-Jurado, M., Llopis, J., et al.Influence of dietary supplementation with fish oil on plasma fatty acid composition in coronary heart disease patientsAnn. Nutr. Metab.39(1)52-62(1995) 3.Yi, L.-Z., He, J., Liang, Y.-Z., et al.Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDAFEBS Lett.580(30)6837-6845(2006) 4.Kabagambe, E.K., Tsai, M.Y., Hopkins, P.N., et al.Erythrocyte fatty acid composition and the metabolic syndrome: A National Heart, Lung, and Blood Institute GOLDN studyClin. Chem.54(1)154-162(2008)
AAA is an antagonist of G protein-coupledreceptor 75 (GPR75).1It increases basal GPR75 protein levels and inhibits 20-HETE-induced reductions in GPR75 protein levels in PC3 cells. AAA (5 and 10 μM) also reduces 20-HETE-induced phosphorylation of EGFR, NF-κB, and Akt in, and cell migration of, PC3 cells.In vivo, AAA (10 mg/kg per day) reduces systolic blood pressure, albuminuria, renal angiotensin II levels, and cardiac hypertrophy in a Cyp1a1-Ren-2 transgenic rat model of malignant hypertension when administered prior to induction or after establishment of hypertension.2 1.Cárdenas, S., Colombero, C., Panelo, L., et al.GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cellsBiochim. Biophys. Acta Mol. Cell Biol. Lipids1865(2)158573(2020) 2.Sedláková, L., Kikerlová, S., Husková, Z., et al.20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic ratsBiosci. Rep.38(5)BSR20171496(2018)
TPα and TPβ are two isoforms of the human TP receptor, the G protein-coupledreceptor (GPCR) that mediates the actions of thromboxane A2 (TXA2). Although their distinct physiological functions have not been fully elucidated, TPβ is believed to be responsible for vascular endothelial growth factor-induced endothelial cell differentiation and migration whereas TPα appears to be the predominant isoform expressed in platelets. CAY10535 is a TP receptor antagonist that shows ~20-fold selectivity for TPβ (IC50 = 99 nM) relative to TPα (IC50 = 1,970 nM) in the inhibition of U46619-mediated Ca2+ mobilization. This compound exhibits relatively poor activity on platelets (IC50 = 985 nM) when inhibiting U-46619-induced platelet aggregation.
The prostaglandin E receptor 4 (EP4) is one of four G protein-coupledreceptors that mediate the actions of prostaglandin E2 . Binding of PGE2 to the EP4 receptor causes an increase in intracellular cyclic AMP, which plays important roles in bone formation and resorption, cancer, and atherosclerosis. KMN-80 is a substituted γ-lactam (pyrrolidinone) derivative of PGE1 that acts as a selective and potent agonist of EP4 with an IC50 value of 3 nM (IC50 = 1.4 μM for EP3 and > 10 μM for all other prostanoid receptors). In functional assays it has been shown to stimulate secreted alkaline phosphatase gene reporter activity in EP4-transfected HEK293 cells with an EC50 value of 0.19 nM, demonstrating >5,000 and 50,000-fold selectivity against EP2 and TP, respectively. KMN-80 can induce the differentiation of bone marrow stem cells from both young and aged rats into osteoblasts in vitro (EC50s = 20 and 153 nM, respectively) and exhibits favorable tolerability up to at least 10 μM, whereas the EP4 agonist L-902,688 is highly cytotoxic at similar concentrations in these cells. KMN-80 has been used to repair calvarial defects in an in vivo rat craniomaxillofacial reconstruction model (rate of reduction in defect size equivalent to BMP-2 treated rats) and to promote bone formation in a rat incisor tooth socket model.