(±)-γ-Tocopherol is a form of vitamin E with antioxidant and anti-inflammatory properties. It traps and detoxifies reactive nitrogen oxide species, including nitrogen dioxide, in cell-free assays. It also reduces the synthesis of prostaglandin E2 (PGE2) induced by LPS in RAW 264.7 macrophages and by IL-1β in A549 cells. (±)-γ-Tocopherol inhibits LPS-induced nitrite release and inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells and reduces COX-2 activity in A549 cells pretreated with IL-1β. Serum levels of (±)-γ-tocopherol are decreased in patients with cardiovascular disease.
γ-CEHC, a metabolite of γ-tocopherol, is predominantly excreted through urine, primarily in its conjugated form as glucuronide [1], rather than through bile.
(±)-5,7-Dimethyltocol is a form of tocopherol. It has similar antioxidant activity to α-tocol, but lower activity than γ-tocol, in antioxidant assays using menhaden oil or squalene as substrates. It also increases microviscosity of rat liver liposomes containing phosphatidylcholine (PC) by 70.6% when used at a molar ratio of 0.2 to PC. (±)-Dimethyltocol has been used as an internal standard for the quantification of 5,7-tocol, α- and γ-tocopherol, and α- and γ-tocopheryl quinone by HPLC.
(±)10-HDHA is an autoxidation product of docosahexaenoic acid (DHA) in vitro.[1][2] It is also produced from incubations of DHA in rat liver, brain, and intestinal microsomes.[3][4][5] (±)10-HDHA is a potential marker of oxidative stress in brain and retina where DHA is an abundant polyunsaturated fatty acid. Reference:[1]. VanRollins, M., and Murphy, R.C. Autooxidation of docosahexaenoic acid: Analysis of ten isomers of hydroxydocosahexaenoate. J. Lipid Res. 25(5), 507-517 (1984).[2]. Reynaud, D., Thickitt, C.P., and Pace-Asciak, C.R. Facile preparation and structural determination of monohydroxy derivatives of docosahexaenoic acid (HDoHE) by α-tocopherol-directed autoxidation. Anal. Biochem. 214(1), 165-170 (1993).[3]. VanRollins, M., Baker, R.C., Sprecher, H., et al. Oxidation of docosahexaenoic acid by rat liver microsomes. J. Biol. Chem. 259(9), 5776-5783 (1984).[4]. Yamane, M., Abe, A., and Yamane, S. High-performance liquid chromatography-thermospray mass spectrometry of epoxy polyunsaturated fatty acids and epoxyhydroxy polyunsaturated fatty acids from an incubation mixture of rat tissue homogenate. J. Chromatogr. 652(2), 123-136 (1994).[5]. Kim, H.Y., Karanian, J.W., Shingu, T., et al. Sterochemical analysis of hydroxylated docosahexaenoates produced by human platelets and rat brain homogenate. Prostaglandins 40(5), 473-490 (1990).