(±)13-HODE cholesteryl ester was originally extracted from atherosclerotic lesions and shown to be produced by Cu2+-catalyzed oxidation of LDL. Later studies determined that 15-LO from rabbit reticulocytes and human monocytes were able to metabolize cholesteryl linoleate, a major component of LDL, to 13-HODE cholesteryl ester.
(±)9-HODE cholesteryl ester was originally extracted from atherosclerotic lesions and shown to be produced by Cu2+-catalyzed oxidation of LDL. Later studies determined that 15-LO from rabbit reticulocytes and human monocytes were able to metabolize cholesteryl linoleate, a major component of LDL, to 9-HODE cholesteryl ester.
Sordarin is an inhibitor of fungal protein synthesis originally isolated from S. araneosa.[1] It binds to elongation factor 2 (EF-2) in the presence of ribosomes and inhibits the uncoupled GTPase activity of equimolar mixtures of EF-2 and ribosomes from C. albicans (IC50 = 0.1 μM). Sordarin inhibits protein synthesis in cell-free lysates of C. albicans, C. glabrata, and C. neoformans (IC50s = 0.01, 0.2, and 0.06 μg/ml, respectively) but not in rabbit reticulocytes (IC50 = >100 μg/ml).[1] [2] It inhibits the growth of C. albicans (MIC = 8 μg/ml) but not C. glabrata or C. neoformans (MICs = >125 μg/ml).
(±)9-HODE is one of the two racemic monohydroxy fatty acids resulting from the non-enzymatic oxidation of linoleic acid. Approximately equal proportions of both isomers are found in mitochondrial and plasma membranes of rabbit reticulocytes. [1][2] Oxidized LDL contains significant amounts of esterified 9- and 13-HpODEs and HODEs. [3][4]