FSL-1 TFA, a bacterial-derived toll-like receptor 2 6 (TLR2 6) agonist, enhances resistance to experimental HSV-2 infection[1]. FSL-1 TFA induces MMP-9 production through TLR2 and NF-κB AP-1 signaling pathways in monocytic THP-1 cells[2]. FSL-1 significantly reduces HSV-2 replication in human vaginal epithelial cells (EC)[1].FSL-1 induces significant resistance to experimental genital HSV-2 infection through elaboration of a specific cytokine response profile[1].FSL-1 (50 ng mL, 24 hours) induces MMP-9 expression at both mRNA and protein levels in human monocytic THP-1 cells[2].FSL-1 activates the MAP kinase NF-κB signaling pathway[2]. Cell Viability Assay[1] Cell Line: V11I, V12I or V19I immortalized human vaginal EC FSL-1 application significantly protectes against genital HSV-2 challenge in mice[1]. Animal Model: Female Swiss-Webster mice (weighing 20-25 g)[1] [1]. William A Rose 2nd, et al. FSL-1, a bacterial-derived toll-like receptor 2 6 agonist, enhances resistance to experimental HSV-2 infection. Virol J. 2009 Nov 10;6:195. [2]. Cathryn J Kurkjian,et al. The Toll-Like Receptor 2 6 Agonist, FSL-1 Lipopeptide, Therapeutically Mitigates Acute Radiation Syndrome. Sci Rep. 2017 Dec 11;7(1):17355.
Chlorhexidine-d8 is intended for use as an internal standard for the quantification of chlorhexidine by GC- or LC-MS. Chlorhexidine is a bis(biguanide) antimicrobial disinfectant and antiseptic agent. It inhibits growth of clinical methicillin-resistant S. aureus (MRSA) isolates (MIC90 = 4 μg ml). It is also active against canine isolates of MRSA, methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. pseudintermedius (MRSP), and methicillin-susceptible S. pseudintermedius (MSSP; MIC90s = 4, 2, 2, and 1 mg L, respectively). Chlorhexidine inhibits growth of E. faecium strains (MICs = 1.2-19.6 μg ml) and C. albicans (MIC = 5.15 μg ml). It generates cations that bind to and destabilize the bacterial cell wall to induce death.6 Chlorhexidine also completely inhibits matrix metalloproteinase-2 (MMP-2) and MMP-9 when used at concentrations of 0.0001 and 0.002%, respectively, in a gelatin degradation assay. Formulations containing chlorhexidine have been used in antisept......