C22 dihydro 1-Deoxyceramide (m18:0 22:0) is a very long-chain atypical ceramide containing a 1-deoxysphinganine backbone. 1-Deoxysphingolipids are formed when serine palmitoyltransferase condenses palmitoyl-CoA with alanine instead of serine during sphingolipid synthesis.1,2 C22 dihydro 1-Deoxyceramide (m18:0 22:0) has been found in mouse embryonic fibroblasts (MEFs) following application of 1-deoxysphinganine alkyne or 1-deoxysphinganine-d3.3 It has also been found as the most prevalent dihydro deoxyceramide species in mouse brain, spinal cord, and sciatic nerve at one, three, and six months of age.4 |1. Steiner, R., Saied, E.M., Othman, A., et al. Elucidating the chemical structure of native 1-deoxysphingosine. J. Lipid Res. 57(7), 1194-1203 (2016).|2. Alecu, I., Othman, A., Penno, A., et al. Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway. J. Lipid Res. 58(1), 60-71 (2017).|3. Alecu, I., Tedeschi, A., Behler, N., et al. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J. Lipid. Res. 58(1), 42-59 (2017).|4. Schwartz, N.U., Mileva, I., Gurevich, M., et al. Quantifying 1-deoxydihydroceramides and 1-deoxyceramides in mouse nervous system tissue. Prostaglandins Other Lipid Mediat. 141, 40-48 (2019).
1-Stearoyl-2-15(S)-HpETE-sn-glycero-3-PE is a phospholipid that contains stearic acid at the sn-1 position and 15(S)-HpETE at the sn-2 position. It is produced via oxidation of 1-stearoyl-2-arachidonoyl-sn-glycero-3-PE by 15-lipoxygenase (15-LO). 1-Stearoyl-2-15(S)-HpETE-sn-glycero-3-PE (0.6 and 0.9 μM) increases ferroptotic cell death in wild-type and Acsl4 knockout Pfa1 mouse embryonic fibroblasts (MEFs) treated with the GPX4 inhibitor RSL3.
C6 urea ceramide is an inhibitor of neutral ceramidase.1 It increases total ceramide levels in wild-type mouse embryonic fibroblasts (MEFs) and in HT-29 colon cancer cells but not in MEFs lacking neutral ceramidase. It inhibits proliferation of, and induces apoptosis and autophagy in HT-29, but not non-cancerous RIE-1, cells when used at concentrations of 5 and 10 μM. C6 urea ceramide decreases total β-catenin, increases phosphorylated β-catenin, and induces colocalization of β-catenin with the 20S proteasome in HT-29 and HCT116, but not RIE-1, cells. It reduces tumor growth and increases C16, C18, C20, and C24 ceramide levels in tumor tissue in an HT-29 mouse xenograft model when administered at doses of 1.25, 2.5, and 5 mg/kg for five days. |1. García-Barros, M., Coant, N., Kawamori, T., et al. Role of neutral ceramidase in colon cancer. FASEB J. 30(12), 4159-4171 (2016).
C24 dihydro 1-Deoxyceramide (m18:0 24:0) is a very long-chain atypical ceramide containing a 1-deoxysphinganine backbone. 1-Deoxysphingolipids are formed when serine palmitoyltransferase condenses palmitoyl-CoA with alanine instead of serine during sphingolipid synthesis.1,2 C24 dihydro 1-Deoxyceramide (m18:0 24:0) has been found in mouse embryonic fibroblasts (MEFs) following application of 1-deoxysphinganine alkyne or 1-deoxysphinganine-d3.3 It has also been found in mouse brain, spinal cord, and sciatic nerve at one, three, and six months of age.4 |1. Steiner, R., Saied, E.M., Othman, A., et al. Elucidating the chemical structure of native 1-deoxysphingosine. J. Lipid Res. 57(7), 1194-1203 (2016).|2. Alecu, I., Othman, A., Penno, A., et al. Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway. J. Lipid Res. 58(1), 60-71 (2017).|3. Alecu, I., Tedeschi, A., Behler, N., et al. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J. Lipid. Res. 58(1), 42-59 (2017).|4. Schwartz, N.U., Mileva, I., Gurevich, M., et al. Quantifying 1-deoxydihydroceramides and 1-deoxyceramides in mouse nervous system tissue. Prostaglandins Other Lipid Mediat. 141, 40-48 (2019).
Dynamin-related GTPase DRP1 partial inhibitor (IC50 = 1.2 μM). Selective for DRP1 over other dynamin-related GTPases, OPA1 and DYN1. Increases mitochondrial DNA levels in mfn1- knockout MEFs deficient in mitochondrial fusion. Mallat et al (2018) Discovery and characterization of selective small molecule inhibitors of the mammalian mitochondrial division dynamin, DRP1. Biochem.Biophys.Res.Commun. 499 556 PMID:29601815