(5E)-7-Oxozeaenol is a resorcylic acid lactone that has been found in the fungus MSX 63935 and has enzyme inhibitory and anticancer activities.1,2 It inhibits TGF-β-activated kinase 1 (TAK-1; IC50 = 1.3 μM).1 (5E)-7-Oxozeaenol inhibits proliferation of MCF-7, H460, SF-268, HT-29, and MDA-MB-435 human cancer cells with IC50 values of 4.9, 1.2, 5.6, 4.4, and 5.5 μM, respectively.2 |1. Fakhouri, L., El-Elimat, T., Hurst, D.P., et al. Isolation, semisynthesis, covalent docking and transforming growth factor beta-activated kinase 1 (TAK1)-inhibitory activities of (5Z)-7-oxozeaenol analogues. Bioorg. Med. Chem. 23(21), 6993-6999 (2015).|2. Ayers, S., Graf, T.N., Adcock, A.F., et al. Resorcylic acid lactones with cytotoxic and NF-κB inhibitory activities and their structure-activity relationships. J. Nat. Prod. 74(5), 1126-1131 (2011).
IRC-083927 HCl is novel and potent microtubule inhibitor with potential anticancer activity. IRC-083927 inhibits the tubulin polymerization by a binding to the colchicine site. IRC-083927 inhibits in vitro cell growth of human cancer cell lines in the low nanomolar range. More interesting, it remains highly active against cell lines resistant to microtubule-interacting agents (taxanes, Vinca alkaloids, or epothilones). Chronic oral treatment with IRC-083927 (5 mg kg) inhibits the growth of two human tumor xenografts in nude mice (C33-A, human cervical cancer and MDA-MB-231, human hormone-independent breast cancer). Together, the antitumor effects induced by IRC-083927 on tumor models resistant to tubulin agents support further investigations to fully evaluate its potential for the treatment of advanced cancers, particularly those resistant to current clinically available drugs.
(E)-Ajoene is a disulfide that has been found inA. sativumand has diverse biological activities.1,2,3,4It is active against Gram-positive and Gram-negative bacteria (MICs = 10-250 and 150->500 μg/ml, respectively) and fungi (MICs = 15-50 μg/ml).1(E)-Ajoene inhibits proliferation of a variety of cancer cells, including MDA-MB-231 breast, HeLa cervical, and WHCO1 esophageal cancer cells (IC50s = 18.6, 61, and 39.2 μM, respectively).2It also inhibits human glutathione reductase andT. cruzitrypanothione reductase when used at a concentration of 200 μM.3(E)-Ajoene (25 mg/kg) is neuroprotective in a gerbil model of ischemia-reperfusion injury, reducing reactive astrocytosis and microgliosis in the hippocampal CA1 region.4 1.Yoshida, H., Iwata, N., Katsuzaki, H., et al.Antimicrobial activity of a compound isolated from an oil-macerated garlic extractBiosci. Biotechnol. Biochem.62(5)1014-1017(1998) 2.Kaschula, C.H., Hunter, R., Hassan, H.T., et al.Anti-proliferation activity of synthetic ajoene analogues on cancer cell-linesAnticancer Agents Med. Chem.11(3)260-266(2011) 3.Gallwitz, H., Bonse, S., Martinez-Cruz, A., et al.Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: Crystallographic, kinetic, and spectroscopic studiesJ. Med. Chem.42(3)364-372(1999) 4.Yoo, D.Y., Kim, W., Nam, S.M., et al.Neuroprotective effects of Z-ajoene, an organosulfur compound derived from oil-macerated garlic, in the gerbil hippocampal CA1 region after transient forebrain ischemiaFood Chem. Toxicol.721-7(2014)
TunR1 is an antibiotic and derivative of tunicamycin .1It is active againstB. subtilis(MIC = 0.3 μg ml) and increases the efficacy of the β-lactam antibiotics oxacillin , methicillin , and penicillin G againstB. subtiliswhen used at a concentration of 0.4 μg ml. TunR1 (5 μg ml) is cytotoxic to MDA-MB-231 breast cancer cells and non-cancerous CHO cells. Unlike tunicamycin, TunR1 does not inhibit glycosylation in a protein N-glycosylation assay. 1.Price, N.P., Hartman, T.M., Li, J., et al.Modified tunicamycins with reduced eukaryotic toxicity that enhance the antibacterial activity of β-lactamsJ. Antibiot. (Tokyo)70(11)1070-1077(2017)
PKI-179 is a potent and orally active dual PI3K mTOR inhibitor, with IC50s of 8 nM, 24 nM, 74 nM, 77 nM, and 0.42 nM for PI3K-α, PI3K-β, PI3K-γ, PI3K-δ and mTOR, respectively. PKI-179 also exhibits activity over E545K and H1047R, with IC50s of 14 nM and 11 nM, respectively. PKI-179 shows anti-tumor activity in vivo[1][2]. PKI-179 inhibits the cell proliferation, with IC50s of 22 nM and 29 nM for MDA361 and PC3 cells, respectively[1].PKI-179 shows inhibitory activity against a panel of 361 other kinases, hERG and cytochrome P450 (CYP) isoforms at concentrations up to >30 μM, but does have activity for CYP2C8 (IC50=3 μM)[1]. PKI-179 (5-50 mg kg; p.o. once daily for 40 days) inhibits the tumor growth and is well tolerated in nude mice bearing MDA-361 human breast cancer tumors[1].PKI-179 (50 mg kg; p.o.) results in good inhibition of PI3K signaling in nude mice bearing MDA361 tumor xenografts[1].PKI-179 exhibits good oral bioavailability (98% in nude mouse, 46% in rat, 38% in monkey, and 61% in dog) and a high half-life (>60 min) [1]. [1]. Venkatesan AM, et, al. PKI-179: an orally efficacious dual phosphatidylinositol-3-kinase (PI3K) mammalian target of rapamycin (mTOR) inhibitor. Bioorg Med Chem Lett. 2010 Oct 1;20(19):5869-73.[2]. Rehan M. A structural insight into the inhibitory mechanism of an orally active PI3K mTOR dual inhibitor, PKI-179 using computational approaches. J Mol Graph Model. 2015 Nov;62:226-234.
YW3-56 is an inhibitor of protein arginine deiminase 2 (PAD2) and PAD4 (IC50s = 0.5-1 and 1-5 μM, respectively).1It inhibits the growth of U2OS osteosarcoma cells (IC50= ~2.5 μM) in a p53-dependent mannerviainduction of SESN2 and subsequent inhibition of mTORC1. YW3-56 (10 mg kg) reduces tumor growth in an S-180 murine sarcoma tumor model. It also inhibits tumor growth in the 1883 MDA-MB-231 breast cancer bone metastasis mouse xenograft model.2 1.Wang, Y., Li, P., Wang, S., et al.Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activityThe Journal of Biological Chemisty287(31)25941-25952(2012) 2.Wang, S., Chen, X.A., Hu, J., et al.ATF4 gene network mediates cellular response to the anticancer PAD inhibitor YW3-56 in triple-negative breast cancer cellsMol. Cancer Ther.14(4)877-888(2015)