(S)-Verapamil hydrochloride is an inhibitor of leukotriene C4 (LTC4) and calcein transport by MRP1,and leads to the death of potentially resistant tumor cells.
ONO-8809 is a thromboxane A2 receptor antagonist. ONO-8809 inhibited the LTC4-induced airway hyperresponsiveness to histamine in a dose-dependent manner. Macrophage accumulation and matrix metalloproteinase-9 (MMP-9) activity in the stroke-negative area i
Leukotrienes (LTs) are a group of acute inflammatory mediators derived from arachidonic acid in leukocytes. The majority of these metabolites are formed through the 5-lipoxygenase (5-LO) pathway. 14,15-LTE4 is a metabolite of 14,15-LTC4 and 14,15-LTD4, an alternate class of LTs synthesized by a pathway involving the dual actions of 15- and 12-LOs on arachidonic acid via 15-HpETE and 14,15-LTA4 intermediates. These metabolites are classified as eoxins because they are formed mostly by eosinophils. Mast cells and nasal polyps can synthesize 14,15-LTC4 as well, however metabolism to 14,15-LTE4 in these cells and tissue has not been documented. 14,15-LTE4 increases vascular permeability of human endothelial cell monolayers with about 10-fold less potency than LTC4, but approximately 100-fold greater potency than histamine.
The group IVA phospholipase A2 (PLA2), known as calcium-dependent cytosolic PLA2 (cPLA2), selectively releases arachidonic acid (AA) from membrane phospholipids, playing a central role in initiating the synthesis of prostaglandins (PGs) and leukotrienes (LTs). Pyrrophenone inhibits cPLA2α with an IC50 of 4.2 nM in enzyme assays and potently blocks the release of AA and the production of PGE2 and LTC4 in cells (IC50 = 24, 25, and 14 nM, respectively). Its action is reversible and selective, as pyrrophenone inhibits the secretory type IB and IIA PLA2s with more than a hundred-fold less potency. Pyrrophenone has also been shown to inhibit calcium ionophore (A23187)-stimulated AA release from monocytic cells, interleukin-1-induced PGE2 synthesis in mesangial cells, and the production of PGE2, LTs, and platelet-activating factor by human neutrophils, always with maximal inhibition at concentrations below 1 μM.
11-trans Leukotriene C4 (11-trans LTC4) is a C-11 double bond isomer of LTC4. LTC4 undergoes slow temperature-dependent isomerization to 11-trans LTC4 during storage. 11-trans LTC4 is produced in smaller amounts relative to LTC4 in ionophore-stimulated HMC-1 cells (a human mast cell line) and equine eosinophils, but not in human neutrophils or RBL-1 cells. It is nearly equipotent with LTC4 for contraction of guinea pig parenchymal and ileum. In a radioligand binding assay using guinea pig ileum as a cysteinyl leukotriene receptor preparation, the pKis for LTC4 and 11-trans LTC4 were determined to be 6.42 and 6.58, respectively.
Leukotriene C4 (LTC4) is the parent cysteinyl-leukotriene produced by the LTC4 synthase-catalyzed conjugation of glutathione to LTA4. LTC4 is produced by neutrophils, macrophages, and mast cells, and by transcellular metabolism in platelets. It is one of the constituents of slow-reacting substance of anaphylaxis (SRS-A) and exhibits potent smooth muscle contracting activity. LTC4-induced bronchoconstriction and enhanced vascular permeability contribute to the pathogenesis of asthma and acute allergic hypersensitivity. The concentration of LTC4 required to produce marked contractions of lung parenchymal strips and isolated tracheal rings is about 1 nM. LTC4 methyl ester is a more lipid soluble form of LTC4. The biological activity of LTC4 methyl ester has not been reported.
Produced by neutrophils, macrophages, mast cells, and by transcellular metabolism in platelets, leukotriene C4 (LTC4) is the parent cysteinyl leukotriene formed by the LTC4 synthase-catalyzed conjugation of glutathione to LTA4. It is one of the constituents of slow-reacting substance of anaphylaxis (SRS-A) and exhibits potent smooth muscle contracting activity. LTC4, however, is rapidly metabolized to LTD4 and LTE4, which makes the characterization of LTC4 pharmacology difficult. N-methyl Leukotriene C4 (N-methyl LTC4) is a synthetic analog of LTC4 that is not readily metabolized to LTD4 and LTE4.It acts as a potent and selective CysLT2 receptor agonist exhibiting EC50 values of 122 and > 2,000 nM at the human CysLT2 and CysLT1 receptors, respectively. It has essentially the same potency as LTC4 at both the human and murine receptors CysLT2 receptors. N-methyl LTC4 is potent and active in vivo, causing vascular leak in mice overexpressing the human CysLT2 receptor but not in CysLT2 receptor knockout mice.
LTF4 is a cysteinyl-leukotriene produced in vitro, but not reported to date in vivo. It is formed by the incubation of LTE4 with γ-glutamyl transpeptidase and glutathione. LTF4 is a weak agonist in its ability to contract vascular smooth muscle. [1] The rank order of potency of the cysteinyl-leukotrienes to contract vascular smooth muscle is LTD4 > LTC4 > LTE4 >> LTF4. [1] [2]