BIO5192 hydrate is a selective and potent integrin α4β1 (VLA-4) inhibitor (Kd<10 pM). BIO5192 hydrate selectively binds to α4β1 (IC50=1.8 nM) over a range of other integrins. BIO5192 hydrate results in a 30-fold increase in mobilization of murine hematopoietic stem and progenitors (HSPCs) over basal levels[1][2]. The combination of BIO5192 hydrate (1 mg kg; i.v.) and Plerixafor (5 mg kg; s.c.) exert an additive effect on progenitor mobilization[1].BIO5192 hydrate (30 mg kg; s.c; bid; during days 5 through 14) delays paralysis associated with EAE (experimental autoimmune encephalomyelitis)[2].BIO5192 hydrate (1 mg kg, i.v.) shows the terminal half-life is 1.1 hours. BIO5192 hydrate (3, 10, and 30 mg kg; s.c.) shows half-lives of 1.7, 2.7, and 4.7 hours, respectively. The blood plasma curves show that the AUC for the s.c. route of administration increased about 2.5-fold from 5,460 h*ng ml for the 3 mg kg dose to 14,175 h*ng ml for the 30 mg kg[1]. Animal Model: C57BL 6J x 129Sv J F1 mice[1] [1]. Ramirez P, et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood. 2009;114(7):1340‐1343. [2]. Leone DR, et al. An assessment of the mechanistic differences between two integrinalpha 4 beta 1 inhibitors, the monoclonal antibody TA-2 and the small molecule BIO5192, in rat experimental autoimmune encephalomyelitis. J Pharmacol Exp Ther. 2003;305(3):1150-1162.
Echistatin TFA, the smallest active RGD protein belonging to the family of disintegrins that are derived from snake venoms, is a potent inhibitor of platelet aggregation. Echistatin is a potent inhibitor of bone resorption in culture. Echistatin is a potent antagonist of αIIbβ3, αvβ3 and α5β1[1][2][3][4]. [1]. J Musial, et al. Inhibition of platelet adhesion to surfaces of extracorporeal circuits by disintegrins. RGD-containing peptides from viper venoms. Circulation. 1990 Jul;82(1):261-73.[2]. M Sato, et al. Echistatin is a potent inhibitor of bone resorption in culture. J Cell Biol. 1990 Oct;111(4):1713-23.[3]. C C Kumar, et al. Biochemical characterization of the binding of echistatin to integrinalphavbeta3 receptor. J Pharmacol Exp Ther. 1997 Nov;283(2):843-53.[4]. I Wierzbicka-Patynowski, et al. Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem. 1999 Dec 31;274(53):37809-14.