α-Melanocyte-stimulating hormone (α-MSH) is a 13-amino acid peptide hormone produced by post-translational processing of proopiomelanocortin (POMC) in the pituitary gland, as well as in keratinocytes, astrocytes, monocytes, and gastrointestinal cells.1It is an agonist of melanocortin receptor 3 (MC3R) and MC4R that induces cAMP production in Hepa cells expressing the human receptors (EC50s = 0.16 and 56 nM, respectively).2α-MSH (100 pM) reducesS. aureuscolony formation andC. albicansgerm tube formationin vitro.3It inhibits endotoxin-, ceramide-, TNF-α-, or okadaic acid-induced activation of NF-κB in U937 cells.1α-MSH reduces IL-6- or TNF-α-induced ear edema in mice.4It also prevents the development of adjuvant-induced arthritis in rats and increases survival in a mouse model of septic shock. Increased plasma levels of α-MSH are positively correlated with delayed disease progression and reduced death in patients with HIV.1 1.Catania, A., Airaghi, L., Colombo, G., et al.α-melanocyte-stimulating hormone in normal human physiology and disease statesTrends Endocrinol. Metab.11(8)304-308(2000) 2.Miwa, H., Gantz, I., Konda, Y., et al.Structural determinants of the melanocortin peptides required for activation of melanocortin-3 and melanocortin-4 receptorsJ. Pharmacol. Exp. Ther.273(1)367-372(1995) 3.Cutuli, M., Cristiani, S., Lipton, J.M., et al.Antimicrobial effects of a-MSH peptidesJ. Leukoc. Biol.67(2)233-239(2000) 4.Lipton, J.M., Ceriani, G., Macaluso, A., et al.Antiiinflammatory effect of the neuropeptide a-MSH in acute, chronic, and systemic inflammationAnn. N.Y. Acad. Sci.25(741)137-148(1994)
Ganglioside GT1b is a trisialoganglioside that is characterized by having two sialic residues linked to the inner galactose unit. It binds to the neurotoxins botulinum toxin serotype A (BTxA), BTxA heavy chain, and tetanus toxin with IC50 values of 11, 0.74, and 7.2 μM, respectively.[1] Ganglioside GT1b-containing liposomes bind to the major coat protein VP1 from Merkel cell polyomavirus (MCPyV), which has been identified in Merkel cell carcinomas, identifying ganglioside GT1b as a putative MCPyV receptor. [2] Ganglioside GT1b decreases production of IL-6, IL-10, IgG, IgM, and IgA in human peripheral blood mononuclear cells (PBMCs) by 31.4, 30.5, 60, 59.5, and 58%, respectively, when used at a concentration of 10 μM [3] . Ganglioside GT1b mixture contains ganglioside GT1b molecular species with C18:1 and C20:1 sphingoid backbones.
Givinostat (ITF-2357) is a HDAC inhibitor with an IC50 of 198 and 157 nM for HDAC1 and HDAC3, respectively. Givinostat (ITF2357) suppresses total LPS-induced IL-1β production robustly compared with the reduction by ITF3056. At 25, 50, and 100 nM, Givinostat reduced IL-1β secretion more than 70%. Givinostat (ITF-2357) suppresses the production of IL-6 in PBMCs stimulated with TLR agonists as well as the combination of IL-12 plus IL-18. IL-6 secretion decreases to 50% at 50 nM Givinostat, but at 100 and 200 nM, there is no reduction[1]. As shown by the CCK-8 assay, Givinostat (ITF-2357) inhibits JS-1 cell proliferation in a concentration-dependent manner. Treatment with Givinostat ≥500 nM is associated with significant inhibition of JS-1 cell proliferation (P<0.01). Also, the cell inhibition rate significantly differs between the group cotreated with Givinostat ≥250 nM plus LPS and the group without LPS treatment (same Givinostat concentration) (P<0.05)[2]. Givinostat (ITF2357) at 10 mg kg is used as a positive control and, as expected, reduced serum TNFα by 60%. Strikingly, pretreatment of ITF3056 starting at 0.1 mg kg significantly reduces the circulating TNFα by nearly 90%. To achieve a significant increase in serum IL-1β production, a higher dose of LPS is injected (10 mg kg), and blood is collected after 4 h. Similarly, when pretreated with lower doses of Givinostat (ITF-2357) (1 or 5 mg kg), there is a 22% reduction for 1 mg kg and 40% for 5 mg kg[1]. [1]. Li S, et al. Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo. J Biol Chem. 2015 Jan 23;290(4):2368-78. [2]. Wang YG, et al. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation. World J Gastroenterol. 2015 Jul 21;21(27):8326-39. [3]. Leoni F, et al. The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med. 2005 Jan-Dec;11(1-12):1-15.
AKP-11 is a sphingosine-1-phosphate receptor 1 (S1P1) agonist with an EC50 of 0.047 μM for [35S]GTPγS binding to CHO-K1 cell membranes expressing human S1P1. It reduces S1P1 surface expression and enhances Akt and ERK phosphorylation in CHO cells with S1P1-HA at a 100 nM concentration. At doses of 1.3 and 3 mg kg, AKP-11 lowers IFN-γ and IL-17 protein levels in the spinal cord and mitigates disease severity in a rat experimental autoimmune encephalomyelitis (EAE) model. Additionally, it decreases peripheral total lymphocyte and specific T cell subsets (CD4+, CD8+, and CD26L+ T cells) counts in both EAE rats and healthy controls at a 1.3 mg kg dosage.