AC708 is a small molecule CSF1R inhibitor that effectively inhibits CSF1R phosphorylation mediated by CSF-1 (IC50 = 26 nM) and IL-34 (IC50 = 33 nM). It also inhibited the activity of growth factor-dependent cells cultured in CSF-1 (IC50 = 38 nM) or IL-34
SR-1903 is a modulator of retinoic acid receptor-related orphan receptor γ (RORγ) and liver X receptor (LXR). It is an inverse agonist of RORγ and an agonist of LXR. It also binds to peroxisome proliferator-activated receptor γ (PPAR) but does not activate it. SR-1903 inhibits LPS-induced expression of triggering receptor expressed on myeloid cells 1 (TREM-1). It also inhibits LPS-induced expression of the LXR target genes IL-6 and IL-33 and increases expression of ABCG1, FASN, and SCD-1. SR-1903 reduces the severity of collagen-induced arthritis. It reduces blood glucose levels in a glucose tolerance test, serum levels of total cholesterol and LDL, body weight, and fat mass in a mouse model of high-fat diet-induced obesity.
Tetranactin is a macrotetrolide and a monovalent cation ionophore that has been found in S. aureus and has antibacterial, insecticidal, and mitogenic activities. It exhibits an equilibrium permeability ratio 1,000-fold greater for lithium than sodium or cesium ions accross bilayer membranes at low voltages. Tetranactin inhibits the growth of Gram-positive bacteria and C. miyabeanus and R. solani fungi when used at concentrations less than 0.9 μg/ml. Tetranactin (0.5-1.5 μg per insect) dose-dependently increases the mortality of adult C. chinensis weevils up to 100% and has mitogenic activity against T. telarius when sprayed onto plants with an LC50 value of 9.2 μg/ml. It reduces IL-1β- and cAMP-induced secretion of phospholipase A2 (PLA2) from rat mesangial cells (IC50s = 43 and 33 nM, respectively). Tetranactin (50 ng/ml) suppresses the proliferation of human T lymphocytes induced by allogeneic cells and IL-2 and supresses the generation of cytotoxic T lymphocytes in mixed lymphocyte cultures. In vivo, tetranactin (10 mg/animal per day) completely inhibits the formation of experimental autoimmune uveoretinitis (EAU) in rats.
SR 1903 is a modulator of retinoic acid receptor-related orphan receptor γ (RORγ) and liver X receptor (LXR).1 It is an inverse agonist of RORγ (IC50 = ~100 nM in a cell-based reporter assay) and an agonist of LXR. It also binds to peroxisome proliferator-activated receptor γ (PPARγ; IC50 = 209 nM) but does not activate it. SR 1903 (10 μM) inhibits LPS-induced expression of triggering receptor expressed on myeloid cells 1 (TREM-1) in RAW 264.7 cells. It also inhibits LPS-induced expression of the LXR target genes IL-6 and IL-33 and increases expression of ABCG1, FASN, and SCD-1 in RAW 264.7 cells. SR 1903 (20 mg kg twice per day) reduces severity score in a mouse model of collagen-induced arthritis. It reduces blood glucose levels in a glucose tolerance test, serum levels of total cholesterol and LDL, body weight, and fat mass in a mouse model of high-fat diet-induced obesity.References1. Chang, M.R., Ciesla, A., Strutzenberg, T.S., et al. Unique polypharmacology nuclear receptor modulator blocks inflammatory signaling pathways. ACS Chem. Biol. 14(5), 1051-1062 (2019). SR 1903 is a modulator of retinoic acid receptor-related orphan receptor γ (RORγ) and liver X receptor (LXR).1 It is an inverse agonist of RORγ (IC50 = ~100 nM in a cell-based reporter assay) and an agonist of LXR. It also binds to peroxisome proliferator-activated receptor γ (PPARγ; IC50 = 209 nM) but does not activate it. SR 1903 (10 μM) inhibits LPS-induced expression of triggering receptor expressed on myeloid cells 1 (TREM-1) in RAW 264.7 cells. It also inhibits LPS-induced expression of the LXR target genes IL-6 and IL-33 and increases expression of ABCG1, FASN, and SCD-1 in RAW 264.7 cells. SR 1903 (20 mg kg twice per day) reduces severity score in a mouse model of collagen-induced arthritis. It reduces blood glucose levels in a glucose tolerance test, serum levels of total cholesterol and LDL, body weight, and fat mass in a mouse model of high-fat diet-induced obesity. References1. Chang, M.R., Ciesla, A., Strutzenberg, T.S., et al. Unique polypharmacology nuclear receptor modulator blocks inflammatory signaling pathways. ACS Chem. Biol. 14(5), 1051-1062 (2019).