A 78773 is a potent, selective, direct, and reversible 5-lipoxygenase inhibitor. It has activity in a variety of purified cells and in more complex biological systems such as whole blood, lung fragments, and tracheal tissues. A 78773 acts against inflamma
Dactylorhin B is an active compound isolated from Coeloglossum Viride. Dactylorhin B reduces the toxic effects of β -amyloid fragments (25-35) on neuron cells and isolated rat brain mitochondria, which play an important role in neurodegenerative diseases.
Mycobactin S is made from metabolic products of the acid-resistant form of Mycobacterium phlei, a tuberculosis bacillus derived originally from the cold-blooded sea turtle. Importantly, it is not based on cell wall fragments or killed bacteria.
Sadopine is an excellent high affinity, high specific activity radioligand to label selectively the DHP receptor of L-type Ca2+ channels in tissue sections as well as in membrane fragments.
Urocortin III is a neuropeptide hormone and member of the corticotropin-releasing factor (CRF) family which includes mammalian CRF , urocortin , urocortin II , frog sauvagine, and piscine urotensin I.1 Human urocortin III shares 90, 40, 37, and 21% identity to mouse urocortin III , mouse urocortin II , human urocortin , and mouse urocortin, respectively. Urocortin III selectively binds to type 2 CRF receptors (Kis = 21.7, 13.5, and >100 nM for rat CRF2α, rat CRF2β, and human CRF1, respectively). It stimulates cAMP production in CHO cells expressing rat CRF2α and mouse CRF2β (EC50s = 0.16 and 0.12 nM, respectively) as well as cultured anterior pituitary cells expressing endogenous CRF2β. Urocortin III is co-released with insulin to potentiate glucose-stimulated somatostatin release in vitro in human pancreatic β-cells.2 In vivo, urocortin III reduces food intake in a dose- and time-dependent manner in mice with a minimum effective dose (MED) of 0.3 nmol/animal.3 It increases swimming time in a forced swim test in mice, indicating antidepressant-like activity.4References1. Lewis, K., Li, C., Perrin, M.H., et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl. Acad. Sci. U.S.A. 98(13), 7570-7575 (2001).2. van der Meulen, T., Donaldson, C.J., Cáceres, E., et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21(7), 769-776 (2015).3. Pelleymounter, M.A., Joppa, M., Ling, N., et al. Behavioral and neuroendocrine effects of the selective CRF2 receptor agonists urocortin II and urocortin III. Peptides 25(4), 659-666 (2004).4. Tanaka, M., Kádár, K., Tóth, G., et al. Antidepressant-like effects of urocortin 3 fragments. Brain Res. Bull. 84(6), 414-418 (2011). Urocortin III is a neuropeptide hormone and member of the corticotropin-releasing factor (CRF) family which includes mammalian CRF , urocortin , urocortin II , frog sauvagine, and piscine urotensin I.1 Human urocortin III shares 90, 40, 37, and 21% identity to mouse urocortin III , mouse urocortin II , human urocortin , and mouse urocortin, respectively. Urocortin III selectively binds to type 2 CRF receptors (Kis = 21.7, 13.5, and >100 nM for rat CRF2α, rat CRF2β, and human CRF1, respectively). It stimulates cAMP production in CHO cells expressing rat CRF2α and mouse CRF2β (EC50s = 0.16 and 0.12 nM, respectively) as well as cultured anterior pituitary cells expressing endogenous CRF2β. Urocortin III is co-released with insulin to potentiate glucose-stimulated somatostatin release in vitro in human pancreatic β-cells.2 In vivo, urocortin III reduces food intake in a dose- and time-dependent manner in mice with a minimum effective dose (MED) of 0.3 nmol/animal.3 It increases swimming time in a forced swim test in mice, indicating antidepressant-like activity.4 References1. Lewis, K., Li, C., Perrin, M.H., et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl. Acad. Sci. U.S.A. 98(13), 7570-7575 (2001).2. van der Meulen, T., Donaldson, C.J., Cáceres, E., et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21(7), 769-776 (2015).3. Pelleymounter, M.A., Joppa, M., Ling, N., et al. Behavioral and neuroendocrine effects of the selective CRF2 receptor agonists urocortin II and urocortin III. Peptides 25(4), 659-666 (2004).4. Tanaka, M., Kádár, K., Tóth, G., et al. Antidepressant-like effects of urocortin 3 fragments. Brain Res. Bull. 84(6), 414-418 (2011).
GLP-1 amide is a peptide hormone cleaved from proglucagon in the pancreas.1,2 Mice lacking the glucagon receptor (Gcgr- -) have approximately nine-fold higher levels of total GLP-1 amide, including GLP-1 (1-36) amide and truncated GLP-1 (7-36) amide , in pancreatic tissue compared to wild-type mice.2References1. Schjoldager, B.T., Mortensen, P.E., Christiansen, J., et al. GLP-1 (glucagon-like peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in humans. Dig. Dis. Sci. 34(5), 703-708 (1989).2. Gelling, R.W., Du, X.Q., Dichmann, D.S., et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 100(3), 1438-1443 (2003). GLP-1 amide is a peptide hormone cleaved from proglucagon in the pancreas.1,2 Mice lacking the glucagon receptor (Gcgr- -) have approximately nine-fold higher levels of total GLP-1 amide, including GLP-1 (1-36) amide and truncated GLP-1 (7-36) amide , in pancreatic tissue compared to wild-type mice.2 References1. Schjoldager, B.T., Mortensen, P.E., Christiansen, J., et al. GLP-1 (glucagon-like peptide 1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in humans. Dig. Dis. Sci. 34(5), 703-708 (1989).2. Gelling, R.W., Du, X.Q., Dichmann, D.S., et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 100(3), 1438-1443 (2003).
5’-O-DMT-Ri can be used in the synthesis of oligoribonucleotides[1]. [1]. Kadokura M. Synthesis of 4-thiouridine, 6-thioinosine, and 6-thioguanosine 3’,5’-O-bisphosphates as donor molecules for RNA ligation and their application to the synthesis of photoactivatable TMG-capped U1 snRNA fragments. J Org Chem. 2000 Aug 25;65(17):5104-13.
13(S)-HpOTrE is a monohydroperoxy polyunsaturated fatty acid produced in soybeans by the action of soybean LO-2 on esterified α-linolenic acid.[1] Incubation of soybean seedling biomembranes with soybean LO-2 catalyzes the formation of both 9- and 13-HpOTrE in a molar ratio of 10:1.1 In plants, 13(S)-HpOTrE can be metabolized by the hydroperoxide lyase pathway producing aldehyde and oxoacid fragments, or by the hydroperoxide dehydratase pathway producing jasmonic acid.[2],[3],[4] Treatment of tomato leaves with 13-HpOTrE causes induction of proteinase inhibitors, simulating the normal response to wounding.5 This data suggests that in plants 13(S)-HpOTrE may participate in a lipid-based signalling system initiated by insect and pathogen attack.
SS-RJW100 is an enantiomer of RJW100, known as a racemic agonist that targets two nuclear receptors: liver receptor homolog 1 (LRH-1) and steroidogenic factor 1 (SF-1). In vitro experiments reveal that SS-RJW100 promotes the recruitment of coregulator protein fragments and enhances the interaction with the transcriptional intermediary factor 2 (Tif2) coactivator specifically for LRH-1. Additionally, SS-RJW100 disrupts the allosteric activation networks of LRH-1, displaying suboptimal thermal stability [1] [2].
DC4 crosslinker, an 18Å mass spectrometry-cleavable crosslinking reagent, features two intrinsic positive charges facilitating the fragmentation of cross-linked peptides into their constituent peptides through collision-induced dissociation or in-source decay. Initial fragmentation leads to cleavage adjacent to the positive charges, enabling the identification of cross-linked peptides as pairs of ions with precise mass separation. Furthermore, the resultant intact peptide fragments can undergo further fragmentation, producing a sequence of b- and y-ions for peptide identification.
Agarose, Low melting point 是一种来源于海藻的多糖。它常用于分子生物学和生物化学中,用于分离和纯化 DNA 和 RNA 片段。Agarose, Low melting point 适用于大 DNA 片段的回收和凝胶内酶促反应等应用。此外,它已被用于各种技术,例如分析遗传物质的脉冲场凝胶电泳和毛细管电泳。
β-Amyloid (29-40), a fragment of the Amyloid-β peptide, possesses physical and chemical properties similar to those of viral protein fusion peptides. The C-terminal fragments (29-40 42) of Alzheimer's beta amyloid peptide can induce the fusion of liposomes.
Adrenocorticotropic Hormone (ACTH) (1-39), rat, is a potent melanocortin 2 (MC2) receptor agonist. During in vitro incubation with membrane preparations, peptide fragments of ACTH (1-39) were formed and subsequently isolated by high-pressure methods.