EN219 is a synthetic recruiter of the E3 ubiquitin ligase RNF114.1It binds to cysteine 8 (C8) in the intrinsically disordered region of RNF114 (RNF114-C8; IC50= 470 nM) and inhibits RNF114-induced autoubiquitination and p21 ubiquitination in a cell-free assay when used at a concentration of 50 μM. EN219 (1 μM) also interacts with cysteine residues in the tubulin β1 chain (TUBB1), heat shock protein 60 (Hsp60), also known as Hsp family D member 1 (HspD1), and histone H3.1 (HIST1H3A) in 231MFP human breast cancer cells in a proteomic profiling assay. It has been linked to the bromodomain and extra terminal domain (BET) inhibitor ligand (+)-JQ1 for use as a proteolysis-targeting chimera (PROTAC) to degrade bromodomain-containing protein 4 (BRD4) in 231MFP cells. 1.Luo, M., Spradlin, J.N., Boike, L., et al.Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product functionCell Chem. Biol.28(4)559-566(2021)
NHC-triphosphate triammonium is an active phosphorylated intracellular metabolite of β-d-N4-Hydroxycytidine (NHC) as a triphosphate form[1]. NHC-triphosphate triammonium is a weak alternative substrate for the viral polymerase and can be incorporated into HCV replicon RNA[1][2]. In an intracellular metabolism assay, HCV replicon cells are treated with 10 μM 3H-labeled NHC, and intracellular nucleotide levels are determined after 1, 2 and 8 hours incubations. NHC is rapidly convered into the mono-, di-, and triphosphate forms, and NHC-TP reaches up to 71.12 pM after 8 hours[1].NHC-triphosphate triammonium (NHC-TP) (5-40 μM) absence leads to full-length polymerization products, it can be a weak alternative substrate. In addition, incorporation of NHC-TP instead of CTP increases the molecular weight of the polymerization product by 16 (one extra oxygen) for each event and an obvious electrophoretic shift is observed in cell-free HCV NS5B polymerization reactions[1].Huh-7 cells are incubated with (10-50 μM; 4 h) NHC or a McGuigan phosphoramidate prodrug of NHC. Intracellular levels of the parental compounds and phosphorylated metabolites are measured using LC-MS MS. Small amounts of NHC-monophosphate (MP) and NHC-diphosphate (DP) can be observed, while NHC-triphosphate triammonium remains the most abundant metabolite[2].NHC-triphosphate triammonium (NHC-TP) metabolite may directly target the viral polymerase and behave as a nonobligate chain terminator. It plays a prominent role in inhibiting early negative-strand RNA synthesis, either through chain termination or mutagenesis, which may in turn interfere with correct replicase complex formation. [1]. Stuyver LJ,et al. Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture.Antimicrob Agents Chemother. 2003 Jan;47(1):244-54. [2]. Maryam Ehteshami, et al. Characterization of β-d- N4-Hydroxycytidine as a Novel Inhibitor of Chikungunya Virus.
Palmitoyl-D-carnitine is a long-chain acylcarnitine, an isomer of palmitoyl-L-carnitine , and the D enantiomer of palmitoyl-DL-carnitine . It inhibits carnitine palmitoyltransferase with a Ki value of 2.1 mM for 14C-palmitoylcarnitine synthesis by erythrocyte membranes.
Phosphatidic acid is a phospholipid and an intermediate in glycerolipid biosynthesis. It is a transient intermediate in the synthesis of various phospholipid species that is synthesized de novo in cells via multiple routes, including the glycerol-3 phosphate and dihydroxyacetone phosphate pathways, enzymatic conversion of phosphatidylcholine by phospholipase D, and acetylation of lysophosphatidic acid by lysoPA-acyltransferase, among others. It has roles in shaping cellular membranes, cellular signaling, vesicle fission and fusion, as well as mitochondrial division and fusion. It stimulates respiratory burst in neutrophils independent of diacylglycerol and activates monoacylglycerol acyltransferase, phospholipase C (PLC), Ras, and phosphatidylinositol 4-phosphate (PIP4) kinase in several cell lines. Phosphatidic acids (egg) is a mixture of phosphatidic acids isolated from chicken egg with fatty acids of variable chain lengths.
Quorum sensing is a regulatory process used by bacteria for controlling gene expression in response to increasing cell density.[1] This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production.[2] Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group) and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family.[3] C16:1-Δ9-(L)-HSL is a long-chain AHL that functions as a quorum sensing signaling molecule in strains of S. meliloti.[4],[5],[6],[7] Regulating bacterial quorum sensing signaling can be used to inhibit pathogenesis and thus, represents a new approach to antimicrobial therapy in the treatment of infectious diseases.[8] Reference:[1]. González, J.E., and Keshavan, N.D. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70(4), 859-875 (2006).[2]. Gould, T.A., Herman, J., Krank, J., et al. Specificity of acyl-homoserine lactone syntheses examined by mass spectrometry. J. Bacteriol. 188(2), 773-783 (2006).[3]. Penalver, C.G.N., Morin, D., Cantet, F., et al. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett. 580(2), 561-567 (2006).[4]. Teplitski, M., Eberhard, A., Gronquist, M.R., et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Archives of Microbiology 180, 494-497 (2003).[5]. Gao, M., Chen, H., Eberhard, A., et al. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. Journal of Bacteriology 187(23), 7931-7944 (2005).[6]. Marketon, M.M., Glenn, S.A., Eberhard, A., et al. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. Journal of Bacteriology 185(1), 325-331 (2003).[7]. Marketon, M., Gronquist, M.R., Eberhard, A., et al. Characterization of the Sinorhizobium meliloti sinR sinI locus and the production of novel N-Acyl homoserine lactones. Journal of Bacteriology 184(20), 5686-5695 (2002).[8]. Cegelski, L., Marshall, G.R., Eldridge, G.R., et al. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6(1), 17-27 (2008).
Quorum sensing is a regulatory system used by bacteria for controlling gene expression in response to increasing cell density.[1] This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production.[2] Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). Regulation of bacterial quorum sensing signaling systems to inhibit pathogenesis represents a new approach to antimicrobial therapy in the treatment of infectious diseases.[3] AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group), and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family.[4] C16-HSL is one of a number of lipophilic, long acyl side-chain bearing AHLs, including its monounsaturated analog C16:1-(L)-HSL, produced by the LuxI AHL synthase homolog SinI involved in quorum-sensing signaling in S. meliloti, a nitrogen-fixing bacterial symbiont of certain legumes.[5],[6] C16-HSL is the most abundant AHL produced by the proteobacterium R. capsulatus and activates genetic exchange between R. capsulatus cells.[7] N-Hexadecanoyl-L-homoserine lactone and other hydrophobic AHLs tend to localize in relatively lipophilic cellular environments of bacteria and cannot diffuse freely through the cell membrane. The long-chain N-acylhomoserine lactones may be exported from cells by efflux pumps or may be transported between communicating cells by way of extracellular outer membrane vesicles.[8],[9]Reference:[1]. González, J.E., and Keshavan, N.D. Messing with bacterial quorum sensing Microbiol. Mol. Biol. Rev. 70(4), 859-875 (2006).[2]. Gould, T.A., Herman, J., Krank, J., et al. Specificity of acyl-homoserine lactone syntheses examined by mass spectrometry Journal of Bacteriology 188(2), 773-783 (2006).[3]. Cegelski, L., Marshall, G.R., Eldridge, G.R., et al. The biology and future prospects of antivirulence therapies Nature Reviews.Microbiology 6(1), 17-27 (2008).[4]. Penalver, C.G.N., Morin, D., Cantet, F., et al. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions FEBS Letters 580, 561-567 (2006).[5]. Gao, M., Chen, H., Eberhard, A., et al. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti Journal of Bacteriology 187(23), 7931-7944 (2005).[6]. Teplitski, M., Eberhard, A., Gronquist, M.R., et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium Archives of Microbiology 180, 494-497 (2003).[7]. Schaefer, A.L., Taylor, T.A., Beatty, J.T., et al. Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production Journal of Bacteriology 184(23), 6515-6521 (2002).[8]. Pearson, J.P., Van Delden, C., and Iglewski, B.H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals Journal of Bacteriology 181(4), 1203-1210 (1999).[9]. Mashburn-Warren, L., and Whiteley, M. Special delivery: Vesicle trafficking in prokaryotes Molecular Microbiology 61(4), 839-846 (2006).
Tunicamycin 15:1 is a mixture of tunicamycin structural isomers that contain a 15-carbon N-acyl chain with variable branching patterns. The N-acyl chain incorporated into tunicamycins, like tunicamycin 15:1, is derived from the same pool of cellular branched-chain fatty acids (BCFAs) inStreptomycesand directly impacts the biological activity of each individual tunicamycin variant.1,2,3Purified tunicamycin 15:1 withiso,anteiso, or a mixture ofisoandanteisobranching configurations inhibit bacterial phospho-MurNAc-pentapeptide transferase (MraY) with IC50values of 0.05, 0.36, and 0.09 μM, respectively.2 1.Price, N.P.J., Jackson, M.A., Hartman, T.M., et al.Branched chain lipid metabolism as a determinant of the N-Acyl variation of Streptomyces natural productsACS Chem. Biol.16(1)116-124(2021) 2.Hering, J., Dunevall, E., Snijder, A., et al.Exploring the active site of the antibacterial target MraY by modified tunicamycinsACS Chem Biol.15(11)2885-2895(2020) 3.Duksin, D., and Mahoney, W.C.Relationship of the structure and biological activity of the natural homologues of tunicamycinJ. Biol. Chem.257(6)3105-3109(1982)
Tunicamycin 17:1 is a mixture of tunicamycin structural isomers that contain a 17-carbon N-acyl chain with variable branching patterns. The N-acyl chain incorporated into tunicamycins, like tunicamycin 17:1, is derived from the same pool of cellular branched-chain fatty acids (BCFAs) inStreptomycesand directly impacts the biological activity of each individual tunicamycin variant.1,2,3Purified tunicamycin 17:1 withisooranteisobranching configurations inhibits bacterial phospho-MurNAc-pentapeptide transferase (MraY) with IC50values of 0.12 and 0.9 μM, respectively.2 1.Price, N.P.J., Jackson, M.A., Hartman, T.M., et al.Branched chain lipid metabolism as a determinant of the N-Acyl variation of Streptomyces natural productsACS Chem. Biol.16(1)116-124(2021) 2.Hering, J., Dunevall, E., Snijder, A., et al.Exploring the active site of the antibacterial target MraY by modified tunicamycinsACS Chem Biol.15(11)2885-2895(2020) 3.Duksin, D., and Mahoney, W.C.Relationship of the structure and biological activity of the natural homologues of tunicamycinJ. Biol. Chem.257(6)3105-3109(1982)
Ribavirin-13C5is intended for use as an internal standard for the quantification of ribavirin by GC- or LC-MS. Ribavirin is an antiviral guanosine nucleoside analog.1,2Upon entry into cells, ribavirin is metabolized to an active triphosphate form that induces viral RNA chain termination and inhibits viral polymerases. It reduces replication in a panel of seven RNA and four DNA viruses in Vero cells (EC50s = 2-95 μg/ml).3Ribavirin also reduces replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Vero cells (EC50= 109.5 μM).4Aerosol administration of ribavirin (30 mg/kg) reduces mortality in a mouse model of influenza A infection.5Formulations containing ribavirin have been used in the treatment of respiratory syncytial virus (RSV), hepatitis C virus (HCV), and viral hemorrhagic fevers. 1.Gilbert, B.E., and Knight, V.Biochemistry and clinical applications of ribavirinAntimicrob. Agents Chemother.30(2)201-205(1986) 2.Gordon, C.J., Tchesnokov, E.P., Woolner, E., et al.Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potencyJ. Biol. Chem.295(20)6785-6797(2020) 3.Kirsi, J.J., North, J.A., McKernan, P.A., et al.Broad-spectrum antiviral activity of 2-β-D-ribofuranosylselenazole-4-carboxamide, a new antiviral agentAntimicrob. Agents Chemother.24(3)353-361(1983) 4.Wang, M., Cao, R., Zhang, L., et al.Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitroCell Res.30(3)269-271(2020) 5.Wilson, S.Z., Knight, V., Wyde, P.R., et al.Amantadine and ribavirin aerosol treatment of influenza A and B infection in miceAntimicrob. Agents Chemother.17(4)642-648(1980)
H-D-Phe-Pip-Arg-pNA (S-2238) acetate is a chromogenic substrate designed based on the N-terminal fragment of the A alpha chain of fibrinogen, which is the physiological target of thrombin. As a specific indicator of thrombin activity, H-D-Phe-Pip-Arg-pNA acetate is utilized to quantify. This assay, utilizing H-D-Phe-Pip-Arg-pNA acetate, ensures high sensitivity, accuracy, and ease of execution.
H-D-Phe-Pip-Arg-pNA hydrochloride, a chromogenic substrate, mimics the N-terminal segment of the A alpha chain of fibrinogen, the native substrate of thrombin. It displays specificity towards thrombin and is employed for quantifying antithrombin-heparin cofactor (AT-III). The utilization of H-D-Phe-Pip-Arg-pNA hydrochloride in the AT-III assay enables a sensitive, accurate, and straightforward measurement process.
6-O-beta-D-Galactopyranosyl-D-galactose, a disaccharide, is a constituent of the polysaccharide backbone characterized by beta-(1→6) glycoside linkages, with a side chain attached to the primary chain through a beta-(1→3) bond.
Cefminox (Sodium) is a new cephamycin antibiotic possessing a D-amino acid moiety derived from D-cysteine at the C-7B side chain. Cefminox is active against a wide range of bacteria, especially Gram-negative and anaerobic bacteria. Cefminox shows excellent in vivo efficacy (ED50) which is higher than would be expected from its in vitro activity (MIC). Moreover, cefminox possesses more potent activity in suppression of bacterial regrowth than other cephems[1]. Cefminox (Sodium) was the most active beta-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 microg ml and an MIC90 of 16.0 microg ml. Cefminox was especially active against Bacteroides fragilis (MIC90, 2.0 microg ml), Bacteroides thetaiotaomicron (MIC90, 4.0 microg ml), fusobacteria (MIC90, 1.0 microg ml), peptostreptococci (MIC90, 2.0 microg ml), and clostridia, including Clostridium difficile (MIC90, 2.0 microg ml)[2]. The use of a single preoperative dose of cefminox was similar in efficacy to 3 doses of cefoxitin administered every 4 hours, and that the serum and tissue concentrations attained provide adequate antibiotic coverage[3]. Moreover, cefminox as a dual agonist of IP (Prostacyclin receptor) and PPARγ (peroxisome proliferator-activated receptor-gamma) that significantly inhibits PASMC proliferation by up-regulation of PTEN (phosphatase and tensin homolog) and cAMP ( cyclic adenosine monophosphate), suggesting that it has potential for treatment of PAH(pulmonary arterial hypertension)[4].